• Home
  • /
  • Blog
  • /
  • What is an Integer – Definition & Properties

What is an Integer – Definition & Properties

what is an integer

The word ‘integer’ is a Latin word that means ‘whole’ or ‘intact’. The term integers are used to denote a set consisting of all natural numbers and their corresponding negative numbers including $0$.

You use integers where you want to represent numbers in two opposite forms like describing temperature above/below freezing point, debit/credit of money, a geographical level above/below sea level, and elevator level when it is above/below the ground level. 

Let’s find out more about integers and their properties.

What is an Integer?

Integers are the collection of whole numbers and their corresponding negative numbers. Similar to whole numbers, integers also do not include fractional numbers. Thus, we can say that integers are numbers that can be positive, negative, or zero, but cannot be a fraction. 

The examples of integers are $1$, $2$, $7$, $-8$, $-12$, $-15$, etc. The set of integers is represented by $Z = \{…, -4, -3, -2, -1, 0, 1, 2, 3, 4, …\}$.

Thus a set of integers consists of

  • Positive Numbers: A number is positive if it is greater than zero. Example: $1$, $2$, $3$ . . .
  • Negative Numbers: A number is negative if it is less than zero. Example: $-1$, $-2$, $-3$ . . .
  • Zero ($0$) is defined as neither a negative number nor a positive number. It is a whole number.

Note: The notation $Z$ for the set of integers comes from the German word ‘Zahlen’, which means ‘numbers’.

girl-with-teacher-happy
Maths can be really interesting for kids

Integers on a Number Line

Just like other numbers, the set of integers can also be represented on a number line. A number line of integers is used for the comparison of numbers that are placed at equal intervals on an infinite line that extends on both sides, horizontally. 

The number $0$ is placed at the centre of the line. 

The positive numbers starting from $1$ and moving on to $2$, $3$, and so on are placed on the right-hand side of $0$ at equal intervals. 

Similarly, the negative numbers starting from $-1$ and moving on to $-2$, $-3$, and so on are placed on the left-hand side of $0$ at equal intervals.

what is an integer
Integers on Number Line

Properties of Integers

You can perform any of the following four basic operations on natural numbers. 

  • Addition
  • Subtraction
  • Multiplication 
  • Division

Each of these operations shows one or more of the following properties:

  • Closure Property
  • Commutative Property
  • Associative Property
  • Distributive Property
  • Additive Identity Property
  • Additive Inverse Property
  • Multiplicative Identity Property

Let’s understand these properties of whole numbers in detail.

Types of Coordinate Systems

Closure Property of Integers

The closure property states that if any two numbers from a set are operated by an arithmetic operation then their result also lies in the same set.

The closure property is exhibited by the operations of addition, subtraction, and multiplication in the set of integers. The operation division does not show exhibit closure property in the set of integers.

Closure Property of Addition of Integers

It states that when two integers are added, then their sum is also an integer.

Mathematically, it is represented as if $a, b \in Z, \text {then  } a + b \in Z$.

For example, $-6$ and $13$ are integers, then their sum $-6 + 13 = 7$ is also an integer.

Similarly, $16$ and $-63$ are integers, then their sum $16 + \left(-63 \right) = -47$ is also an integer.

Closure Property of Subtraction of Integers

It states that when two integers are subtracted, then their difference is also an integer.

Mathematically, it is represented as if $a, b \in Z, \text {then  } a \- b \in Z$.

For example, $7$ and $12$ are integers, then their difference $7 – 12 = -5$ is also an integer.

Similarly, $-12$ and $18$ are integers, then their difference $-12 – 18 = -30$ is also an integer.

Closure Property of Multiplication of Integers

It states that when two integers are multiplied, then their product is also an integer.

Mathematically, it is represented as if $a, b \in Z, \text {then  } a \times b \in Z$.

For example, $7$ and $12$ are integers, then their product $7 \times 12 = 84$ is also an integer.

Similarly, $-14$ and $16$ are integers, then their product $-14 \times 16 = -224$ is also an integer.

Note: The operation division does not show closure property in the case of integers.

Is your child struggling with Maths?
frustrated-kid
We can help!
Country
  • Afghanistan 93
  • Albania 355
  • Algeria 213
  • American Samoa 1-684
  • Andorra 376
  • Angola 244
  • Anguilla 1-264
  • Antarctica 672
  • Antigua & Barbuda 1-268
  • Argentina 54
  • Armenia 374
  • Aruba 297
  • Australia 61
  • Austria 43
  • Azerbaijan 994
  • Bahamas 1-242
  • Bahrain 973
  • Bangladesh 880
  • Barbados 1-246
  • Belarus 375
  • Belgium 32
  • Belize 501
  • Benin 229
  • Bermuda 1-441
  • Bhutan 975
  • Bolivia 591
  • Bosnia 387
  • Botswana 267
  • Bouvet Island 47
  • Brazil 55
  • British Indian Ocean Territory 246
  • British Virgin Islands 1-284
  • Brunei 673
  • Bulgaria 359
  • Burkina Faso 226
  • Burundi 257
  • Cambodia 855
  • Cameroon 237
  • Canada 1
  • Cape Verde 238
  • Caribbean Netherlands 599
  • Cayman Islands 1-345
  • Central African Republic 236
  • Chad 235
  • Chile 56
  • China 86
  • Christmas Island 61
  • Cocos (Keeling) Islands 61
  • Colombia 57
  • Comoros 269
  • Congo - Brazzaville 242
  • Congo - Kinshasa 243
  • Cook Islands 682
  • Costa Rica 506
  • Croatia 385
  • Cuba 53
  • Cyprus 357
  • Czech Republic 420
  • Denmark 45
  • Djibouti 253
  • Dominica 1-767
  • Ecuador 593
  • Egypt 20
  • El Salvador 503
  • Equatorial Guinea 240
  • Eritrea 291
  • Estonia 372
  • Ethiopia 251
  • Falkland Islands 500
  • Faroe Islands 298
  • Fiji 679
  • Finland 358
  • France 33
  • French Guiana 594
  • French Polynesia 689
  • French Southern Territories 262
  • Gabon 241
  • Gambia 220
  • Georgia 995
  • Germany 49
  • Ghana 233
  • Gibraltar 350
  • Greece 30
  • Greenland 299
  • Grenada 1-473
  • Guadeloupe 590
  • Guam 1-671
  • Guatemala 502
  • Guernsey 44
  • Guinea 224
  • Guinea-Bissau 245
  • Guyana 592
  • Haiti 509
  • Heard & McDonald Islands 672
  • Honduras 504
  • Hong Kong 852
  • Hungary 36
  • Iceland 354
  • India 91
  • Indonesia 62
  • Iran 98
  • Iraq 964
  • Ireland 353
  • Isle of Man 44
  • Israel 972
  • Italy 39
  • Jamaica 1-876
  • Japan 81
  • Jersey 44
  • Jordan 962
  • Kazakhstan 7
  • Kenya 254
  • Kiribati 686
  • Kuwait 965
  • Kyrgyzstan 996
  • Laos 856
  • Latvia 371
  • Lebanon 961
  • Lesotho 266
  • Liberia 231
  • Libya 218
  • Liechtenstein 423
  • Lithuania 370
  • Luxembourg 352
  • Macau 853
  • Macedonia 389
  • Madagascar 261
  • Malawi 265
  • Malaysia 60
  • Maldives 960
  • Mali 223
  • Malta 356
  • Marshall Islands 692
  • Martinique 596
  • Mauritania 222
  • Mauritius 230
  • Mayotte 262
  • Mexico 52
  • Micronesia 691
  • Moldova 373
  • Monaco 377
  • Mongolia 976
  • Montenegro 382
  • Montserrat 1-664
  • Morocco 212
  • Mozambique 258
  • Myanmar 95
  • Namibia 264
  • Nauru 674
  • Nepal 977
  • Netherlands 31
  • New Caledonia 687
  • New Zealand 64
  • Nicaragua 505
  • Niger 227
  • Nigeria 234
  • Niue 683
  • Norfolk Island 672
  • North Korea 850
  • Northern Mariana Islands 1-670
  • Norway 47
  • Oman 968
  • Pakistan 92
  • Palau 680
  • Palestine 970
  • Panama 507
  • Papua New Guinea 675
  • Paraguay 595
  • Peru 51
  • Philippines 63
  • Pitcairn Islands 870
  • Poland 48
  • Portugal 351
  • Puerto Rico 1
  • Qatar 974
  • Romania 40
  • Russia 7
  • Rwanda 250
  • Réunion 262
  • Samoa 685
  • San Marino 378
  • Saudi Arabia 966
  • Senegal 221
  • Serbia 381 p
  • Seychelles 248
  • Sierra Leone 232
  • Singapore 65
  • Slovakia 421
  • Slovenia 386
  • Solomon Islands 677
  • Somalia 252
  • South Africa 27
  • South Georgia & South Sandwich Islands 500
  • South Korea 82
  • South Sudan 211
  • Spain 34
  • Sri Lanka 94
  • Sudan 249
  • Suriname 597
  • Svalbard & Jan Mayen 47
  • Swaziland 268
  • Sweden 46
  • Switzerland 41
  • Syria 963
  • Sao Tome and Principe 239
  • Taiwan 886
  • Tajikistan 992
  • Tanzania 255
  • Thailand 66
  • Timor-Leste 670
  • Togo 228
  • Tokelau 690
  • Tonga 676
  • Trinidad & Tobago 1-868
  • Tunisia 216
  • Turkey 90
  • Turkmenistan 993
  • Turks & Caicos Islands 1-649
  • Tuvalu 688
  • U.S. Outlying Islands
  • U.S. Virgin Islands 1-340
  • UK 44
  • US 1
  • Uganda 256
  • Ukraine 380
  • United Arab Emirates 971
  • Uruguay 598
  • Uzbekistan 998
  • Vanuatu 678
  • Vatican City 39-06
  • Venezuela 58
  • Vietnam 84
  • Wallis & Futuna 681
  • Western Sahara 212
  • Yemen 967
  • Zambia 260
  • Zimbabwe 263
Age Of Your Child
  • Less Than 6 Years
  • 6 To 10 Years
  • 11 To 16 Years
  • Greater Than 16 Years

Commutative Property of Integers

The commutative property deals with the ordering of numbers in an operation. It states that the result remains the same even if the order of numbers in the operation is changed or swapped.

The commutative property is exhibited by the operations addition and multiplication in the set of integers. The operations subtraction and division do not show exhibit commutative property in the set of integers.

Commutative Property of Addition of Integers

It states that for any two integers their sum remains the same even if the positions of the numbers are interchanged or swapped.

Mathematically, it is represented as if $a, b \in Z, \text {then  } a + b = b + a$.

For example, $-5$ and $13$ are two integers. $-5 + 13 = 8$ and also $13 + \left(-5 \right) = 13 – 5 = 8$.

Similarly, for two integers, $-56$ and $-48$, $-56 + \left(-48 \right) = -104 $ and $-48 + \left(-56 \right) = -48 – 56 = -104$.

Commutative Property of Multiplication of Integers

It states that for any two integers their product remains the same even if the positions of the numbers are interchanged or swapped.

Mathematically, it is represented as if $a, b \in Z, \text {then  } a \times b = b \times a$.

For example, $-9$ and $11$ are two integers. $-9 \times 11 = -99$ and also $11 \times \left(-9 \right) = -99$.

Similarly, for two integers, $-4$ and $-8$, $-4 \times \left(-8 \right) = 32 $ and $-8 \times \left(-4 \right) = 32$.

Associative Property of Integers

The associative property deals with the grouping of numbers in an operation. It states that the result remains the same even if the grouping of numbers is changed while performing the operation.

The associative property is exhibited by the operations addition and multiplication in the set of integers. The operations subtraction and division do not show exhibit associative property in the set of integers.

Associative Property of Addition of Integers

It states that the sum of any three integers remains the same even if the grouping of the numbers is changed. 

Mathematically, it is represented as if $a, b, c \in Z, \text {then  } \left (a + b \right) + c = a + \left(b + c \right)$. 

For example, for three integers $2$, $-8$ and $15$, $\left( 2 + \left(-8 \right) \right) + 15 = -6 + 15 = 9$ and $2 + \left(-8 + 15 \right) = 2 + 7 = 9$.

Similarly, for three integers $-10$, $12$ and $-4$, $\left(-10 + 12 \right) + \left(-4 \right) = 2 + \left(-4 \right) = -2 \text { and } -10 + \left(12 + \left(-4 \right) \right) = -10 + 8 = -2$. 

Associative Property of Multiplication of Integers

It states that the product of any three integers remains the same even if the grouping of the numbers is changed. 

Mathematically, it is represented as if $a, b, c \in Z, \text {then  } \left (a \times b \right) \times c = a \times \left(b \times c \right)$. 

For example, for three integers $4$, $3$ and $-9$, $\left( 4 \times 3 \right) \times \left(-9 \right) = 12 \times \left(-9 \right) = -108$ and $4 \times \left(3 \times \left(-9 \right) \right) = 4 \times \left(-27 \right) = -108$.

Similarly, for three integers $5$, $-10$ and $3$, $\left(5 \times \left(-10 \right) \right) \times 5 = -50 \times 5 = -250 \text { and } 5 \times \left(-10 \times 3 \right) = 5 \times \left(-30 \right) = -150$. 

Greatest Math Discoveries

Distributive Property of Integers

The distributive property of integers deals with the splitting of the distribution of integers through addition and subtraction while performing the multiplication operation.

There are two forms of distributive property of integers.

  • Distributive property of multiplication over addition
  • Distributive property of multiplication over subtraction

Distributive Property of Multiplication Over Addition of Integers

It states that for any three integers the expression of the form $\left(a + b \right) \times c$ can be solved as $a \times b + a \times c$.

For example, $\left(5 + 3 \right) \times 9$ can be solved as $5 \times 9 + 3 \times 9 = 45 + 27 = 72$.

This also $\left(5 + 3 \right) \times 9$ on solving gives $8 \times 9 = 72$. 

Similarly, $\left(150 + 6 \right) \times \left(-4 \right)$ can be solved as $150 \times \left(-4 \right) + 6 \times \left(-4\right) = -600 – 24 = -624$.

This also $\left(150 + 6 \right) \times \left(-4\right)$ on solving gives $156 \times \left(-4\right) = 624$. 

Distributive Property of Multiplication Over Subtraction of Integers

It states that for any three integers the expression of the form $\left(a – b \right) \times c$ can be solved as $a \times b – a \times c$.

For example, $\left(14 – 6 \right) \times 8$ can be solved as $14 \times 8 – 6 \times 8 = 112 – 48 = 64$.

This also $\left(14 – 6 \right) \times 8$ on solving gives $8 \times 8 = 64$. 

Similarly, $\left(100 – 9 \right) \times 5$ can be solved as $100 \times 5 – 9 \times 5 = 500 – 45 = 455$.

This also $\left(100 – 9 \right) \times 5$ on solving gives $91 \times 5 = 455$. 

Note: The distributive property does not hold for division in the case of integers.

Additive Identity Property of Integers

The additive identity property of integers is also known as the identity property of integers of addition, which states that adding $0$ to any integer, results in the number itself. This is due to the fact that when we add $0$ to any integer, it does not change the number and keeps its identity.

Mathematically, it is expressed as for any integer, $a$ there exists an integer $0$ such that $a + 0 = 0 + a = a$.

For example $7 + 0 = 0 + 7 = 7$, or $-9 + 0 = 0 + \left(-9 \right) = -9$.

Note: $0$ is called the additive identity of integers.

Multiplicative Identity Property of Integers

The multiplicative identity property of integers is also known as the identity property of integers of multiplication, which states that multiplying $1$ to any integer, results in the number itself. This is due to the fact that when we multiply $1$ to any integer, it does not change the number and keeps its identity.

Mathematically, it is expressed as for any integer, $a$ there exists an integer $1$ such that $a \times 1 = 1 \times a = a$.

For example $4 \times 1 = 1 \times 4 = 4$, or $-8 \times 1 = 1 \times \left(-8 \right) = -8$.

Note: $1$ is called the multiplicative identity of integers.

Additive Inverse Property of Integers

The additive inverse of an integer is its opposite number. If an integer is added to its additive inverse, the sum of both the numbers becomes zero ($0). 

Mathematically, it is expressed as for every integer $a$, there exists an integer $-a$, such that $a + \left(-a \right) = -a + a = 0$. $-a$ is called the additive inverse of integer $a$.

The simple rule is to change the positive number to a negative number and vice versa. 

For example, additive inverse of $11$ is $-11$, since, $11 + \left(-11 \right) = -11 + 11 = 0$.

Or, additive inverse of $-6$ is $6$, since, $-6 + 6 = 6 + \left(-6 \right) = 0$.

Conclusion

The set of integers is the set of numbers consisting of positive numbers (natural numbers), their corresponding negative numbers, and $0$. The integers exhibit the properties – closure property, commutative property, associative property, distributive property, additive identity property, additive inverse property, and multiplicative identity property.

Practice Problems

State True or False

  • $0$ belongs to the set of integers
  • $0$ does not belong to the set of integers
  • $1$ is an additive identity of integers
  • $0$ is an additive identity of integers
  • $1$ is a multiplicative identity of integers
  • $0$ is a multiplicative identity of integers
  • The set of integers is represented by the letter $I$.
  • The set of integers is represented by the letter $Z$.
  • $-4$ is an additive inverse of $4$
  • $-4$ is a multiplicative inverse of $4$
  • $\frac {1}{4}$ is an additive inverse of $4$
  • $\frac {1}{4}$ is a multiplicative inverse of $4$
  • The multiplicative inverse of integers exists in the set of integers
  • The multiplicative inverse of integers does not exist in the set of integers

Recommended Reading

FAQs

What are integers in math?

Integers are numbers that are positive numbers and their corresponding negative numbers including $0$ (zero). The numbers containing fractional parts are not integers.

For example, $2$, $-8$, $14$, $-56$ are integers, whereas, $4.5$, $-8.3$, $\frac {2}{7}$, or $-\frac{5}{6}$ are not integers.

Can a negative number be an integer?

Yes, all negative numbers without fractional parts are integers. For example, $-6$ is an integer, whereas, $-6.7$ or $-6\frac {2}{3}$ are not integers.

Can a positive number be an integer?

Yes, all positive numbers without fractional parts are integers. For example, $13$ is an integer, whereas, $13.9$ or $13\frac {5}{6}$ are not integers.

What are the properties of integers?

The integers exhibit these properties – closure property, commutative property, associative property, distributive property, additive identity property, additive inverse property, and multiplicative identity property.

What are the applications of integers?

Integers are used to represent numbers in two opposite forms describing temperature above/below freezing point ($5$ degrees Celsius means above freezing point, whereas $-5$ degrees Celsius means below freezing point, debit/credit of money (debit means withdrawal, ie., negative and credit means a deposit, i.e., positive, a geographical level above (positive)/below(negative) sea level, and elevator level when it is above(positive)/below(negative) the ground level.

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
>