• Home
• /
• Blog
• /
• What is a Kite in Geometry – (Definition, Shape, Properties & Examples)

# What is a Kite in Geometry – (Definition, Shape, Properties & Examples)

December 31, 2022 This post is also available in: हिन्दी (Hindi)

There are many types of quadrilaterals in geometry. Some of these are parallelograms such as square, rhombus, and rectangle and some are not parallelograms such as trapezium and kite. The most common example of a kite shape is a flying kite. A kite is also called a ‘deltoid’ which means ‘having a triangular shape’.

Let’s learn what is a kite in geometry, its shape, and its properties with examples and proofs.

## What is a Kite in Geometry?

A kite is a quadrilateral in which four sides can be grouped into two pairs of equal-length sides that are adjacent to each other and the diagonals intersect each other at right angles. In other words, in a kite two pairs of adjacent sides are equal.

In the above figure $\text{ABCD}$ is a kite, where, the adjacent sides $\text{AB}$ and $\text{DA}$ are equal and similarly, the adjacent sides $\text{BC}$ and $\text{CD}$ are equal. The diagonals $\text{AC}$ and $\text{BD}$ are perpendicular to each other. The longer diagonal $\text{AC}$ is called the major diagonal and the shorter diagonal $\text{BD}$ is called the minor diagonal. The major diagonal bisects the minor diagonal.

Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

## Properties of Kite

As learned above in a kite two pairs of adjacent sides are equal and the diagonals are perpendicular to each other and unequal. Let’s now look at some of the important properties of a kite.

The following are the most important properties of a kite.

• A kite has two pairs of adjacent equal sides. In the above figure, $\text{AB} = \text{DA}$ and $\text{BC} = \text{CD}$
• Since it’s a quadrilateral the sum of the interior angles of a kite is equal to $360^{\circ}$
• In a kite one pair of opposite angles (obtuse) are equal. In the above figure, $\angle \text{B} = \angle \text{D}$
• In a kite, the minor diagonal is bisected by the major diagonal.  In the above figure, the diagonal $\text{BD}$ is bisected by the diagonal $\text{AC}$, i.e., $\text{BO} = \text{OD}$
• The diagonals are perpendicular to each other. In the above figure, $\text{AC} \perp \text{BD}$

## Diagonals of a Kite

As learned above, there are two diagonals in a kite – the major diagonal and the minor diagonal. Now, let’s learn about the properties of the diagonals of a kite.

The following are the most important properties of the diagonals of a kite.

• The two diagonals of a kite are of different lengths – the longer diagonal is called the major diagonal and the shorter diagonal is called the minor diagonal
• A pair of diagonally opposite angles of a kite are said to be congruent
• The major diagonal(longer diagonal) bisects the minor diagonal(shorter diagonal). In the above figure, diagonal $\text{AC}$ bisects diagonal $\text{BD}$
• The major diagonal(longer diagonal) bisects the pair of opposite angles. In the above figure, $\angle \text{CAB} = \angle \text{DAC}$, and $\angle \text{BCA} = \angle \text{ACD}$
• The minor diagonal of a kite forms two isosceles triangles. In the above figure, diagonal $\text{BD}$ forms two isosceles triangles – $\triangle \text{ABD}$ and $\triangle \text{BCD}$.
• In $\triangle \text{ABD}$,  the sides $\text{AB}$ and $\text{DA}$ are equal
• In $\triangle \text{BCD}$,  the sides $\text{BC}$ and $\text{CD}$ are equal
• The longer diagonal forms two congruent triangles. In the above figure, diagonal $\text{AC}$ forms two congruent triangles – $\triangle \text{ABC}$ and $\triangle \text{ADC}$

## In a Kite One Pair of Opposite Angles (Obtuse) are Equal

One of the properties of a kite is that a pair of opposite obtuse angles are equal.

Consider the above figure. In a kite $\text{ABCD}$, $\angle \text{ABC} = \angle \text{ADC}$. Let’s prove the statement.

In $\triangle \text{ABD}$, $\angle \text{ABD} = \angle \text{ADB}$ ($\triangle \text{ABD}$ is an isosceles triangle, with $\text{AB} = \text{AD}$) ——————– (1)

In $\triangle \text{CBD}$, $\angle \text{CBD} = \angle \text{CDB}$ ($\triangle \text{CBD}$ is an isosceles triangle, with $\text{BC} = \text{CD}$) ——————– (2)

Adding (1) and (2), we get $\angle \text{ABD} + \angle \text{CBD} = \angle \text{ADB} + \angle \text{CDB}$

$=> \angle \text{ABC} = \angle \text{ADC}$

## The Longer Diagonal Forms Two Congruent Triangles

Another important property of a kite is that the longer diagonal forms two congruent triangles.

Consider the above figure. In a kite $\text{ABCD}$, $\triangle \text{ABC} \cong \triangle \text{ADC}$. Let’s prove the statement.

In $\triangle \text{ABC}$ and $\triangle \text{ADC}$

$\text{AB} = \text{AD}$ (Adjacent sides of a kite)

$\text{BC} = \text{CD}$ (Adjacent sides of a kite)

$\text{AC} = \text{AC}$ (Common Side)

Therefore, $\triangle \text{ABC} \cong \triangle \text{ADC}$ (SSS Congruence Criterion)

## Diagonals of the Kite are Perpendicular to Each Other

In a kite, the diagonals are perpendicular to each other.

In the above figure, $\text{ABCD}$ is a kite and $\text{AC}$, $\text{BD}$ are its diagonals. The diagonals are perpendicular to each other, i.e., $\text{AC} \perp \text{BD}$.

Let’s see how to prove the above statement.

In $\triangle \text{ABC}$ and $\triangle \text{ADC}$

$\text{AB} = \text{AD}$ (Adjacent sides of a kite)

$\text{BC} = \text{CD}$ (Adjacent sides of a kite)

$\text{AC} = \text{AC}$ (Common side)

$=> \triangle \text{ABC} \cong \triangle \text{ADC}$ (SSS Congruence Criterion)

Therefore, $\angle \text{CAB} = \angle \text{CAD}$ (Corresponding Parts of Congruent Triangles)

$=> \angle \text{OAB} = \angle \text{OAD}$ ———————————– (1)

In $\triangle \text{ABO}$ and $\triangle \text{ADO}$

$\angle \text{OAB} = \angle \text{OAD}$  (From (1))

$\text{AB} = \text{AD}$ (Adjacent Sides of a Kite)

$\text{AO} = \text{AO}$ (Common Side)

$=> \triangle \text{ABO} \cong \triangle \text{ADO}$ (SAS Congruence Criterion)

Therefore, $\angle \text{AOB} = \angle \text{AOD}$ (Corresponding Parts of Congruent Triangles) ———— (2)

But $\text{BOD}$ is a straight line, therefore, $\angle \text{BOD} = 180^{\circ}$

$=>\angle \text{AOB} + \angle \text{AOD} = 180^{\circ}$

$=>\angle \text{AOB} + \angle \text{AOB} = 180^{\circ}$ (From (2))

$=>2\angle \text{AOB} = 180^{\circ}$

$=>\angle \text{AOB} = 90^{\circ}$

Thus, $\text{AC} \perp \text{BD}$

## Practice Problems

1. What is a kite?
2. State True or False
1. All sides of a kite are equal
2. The diagonals of a kite are equal
3. The diagonals of a kite are unequal
4. Two pairs of adjacent sides of a kite are equal
5. Two pairs of opposite sides of a kite are equal
6. One pair of adjacent angles of a kite are equal
7. One pair of opposite angles of a kite are equal
8. The major diagonal bisects the angles it connects
9. The minor diagonal bisects the angles it connects
10. The diagonals of a kite are parallel
11. The diagonals of a kite are perpendicular

## FAQs

### What is a kite in Geometry?

A kite is a quadrilateral in which four sides can be grouped into two pairs of equal-length sides that are adjacent to each other and the diagonals intersect each other at right angles.

### Are the diagonals of a kite equal?

No, the diagonals of a kite are not equal. The longer diagonal is called the major diagonal and the shorter diagonal is called the minor diagonal.

### Are the diagonals of a kite perpendicular?

Yes, the diagonals of a kite are perpendicular to each other.

### Do the diagonals of a kite bisect each other?

No, both diagonals do not bisect each other. Only, the major diagonal(longer diagonal) bisects the minor diagonal(shorter diagonal).

## Conclusion

A kite is a quadrilateral in which four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. There are two unequal diagonals in a kite intersecting at right angles such that the longer diagonal bisects the shorter diagonal.