• Home
• /
• Blog
• /
• Volume of Frustum of Cone – Meaning, Formula & Examples

# Volume of Frustum of Cone – Meaning, Formula & Examples

September 29, 2022 This post is also available in: हिन्दी (Hindi)

A frustum is a Latin word that means ‘piece cut off’. When a solid (generally a cone or a pyramid) is cut in such a manner that the base of the solid and the plane cutting the solid are parallel to each other, part of the solid which remains between the parallel cutting plane and the base is known as a frustum of that solid. Some common examples of a frustum of cone are the shade of a table lamp, bucket, glass tumbler, etc.

The volume of frustum is basically the space occupied by the frustum and is measured in cubic units like $m^{3}$, $cm^{3}$, $ft^{3}$, $in^{3}$, etc.

Let’s learn how to find the volume of frustum of a cone and its methods and formulas.

## Frustum of Cone – A 3D Solid Shape

The frustum of cone is the part of the cone without a vertex when the cone is divided into two parts with a plane that is parallel to the base of the cone.

### Properties of a Frustum of Cone

The following properties of a frustum of cone will help you to identify a it easily.

• The frustum of a cone doesn’t contain the vertex of the corresponding cone but contains the base of the cone.
• The frustum of a cone is determined by its height and two radii (corresponding to two bases).
• The height of the frustum of a cone is the perpendicular distance between the centers of the two bases of the frustum.
• If the cone is a right circular cone, then the frustums formed from it also would be right-circular.
Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

## Volume of Frustum of Cone

The volume of frustum of cone can be calculated using its height and the areas of its bases.

Let us consider a frustum of cone of height $h$ and radii of the two bases as $r$ and $\text{R}$.

The volume of frustum of cone is calculated using the formula $\text{V} = \frac {\pi}{3}h(\text{R}^{2} + \text{R}r + r^{2})$.

Where $h$ is the height of the frustum of the cone(perpendicular distance between two bases)

$r$ is the radius of the smaller base

$R$ is the radius of the larger base

### Derivation of Formula for Volume of Frustum of Cone

There are two methods of deriving the formula for the volume of the frustum of a cone. You can use any of these methods to derive the formula.

#### Method 1 to Derive the Volume of Frustum of Cone Formula

In this method, we’ll use the formula for the volume of a general frustum to derive the volume of frustum of cone formula. If $s_{1}$ and $s_{2}$ are the surface areas of the two bases of a frustum,  and $h$ is the height of the frustum, then the volume of frustum of cone is given by the formula

$\text{V} = \frac {h}{3}\left(s_{1} + s_{2} + \sqrt{s_{1}s_{2}} \right)$ ————————– (1)

If $r$ and $\text{R}$ are the radii of the two bases of the frustum of a cone, then $s_{1} = \pi r^{2}$ and $s_{2} = \pi \text{R}^{2}$

Substituting the values of $s_{1}$ and $s_{2}$ in (1), we get

$\text{V} = \frac {h}{3}\left(\pi r^{2} + \pi \text{R}^{2} + \sqrt{\pi r^{2} \times \pi \text{R}^{2}} \right)$

$=>\text{V} = \frac {h}{3}\left(\pi r^{2} + \pi \text{R}^{2} + \sqrt{(\pi r \text{R})^{2}} \right)$

$=>\text{V} = \frac {h}{3}\left(\pi r^{2} + \pi \text{R}^{2} + \pi r \text{R} \right)$

$=>\text{V} = \frac {\pi h}{3}\left( r^{2} + \text{R}^{2} + r\text{R} \right)$

where $h$ is the height of frustum(perpendicular distance between the two bases of a frustum)

$r$ is the radius of a smaller base of the frustum

$\text{R}$ is the radius of a larger base of the frustum

#### Method 2 to Derive the Volume of Frustum of Cone Formula

In this method, we’ll use the formula for the volume of a cone to derive the formula for the volume of frustum of a cone. The volume of a cone of height $h$ and radius of base $r$ is given by $V = \frac {1}{3}\pi r^{2} h$.

Now consider a cone of height $\text{H} + h$, where $h$ is the height of a frustum and radius of the base $\text{R}$, then the volume of a cone is given by the formula $\frac {1}{3}\pi \text{R}^{2} \left(\text{H} + h \right)$.

Note: Volume of small cone that is cut by a plane is $\frac {1}{3}\pi r^{2} h$.

Now, we have the volume of frustum of the cone, $\text{V} = \text{The volume of the full cone} – \text{The volume of the cone that is cut}$, which means $\text{V} = \frac {1}{3}\pi \text{R}^{2} \left(\text{H} + h \right) – \frac {1}{3}\pi r^{2} h$. ——————————– (1)

The triangles $\text{OBC}$ and $\text{PQC}$ are similar (by AA property of similarity) and thus,

$\frac {\text{H} + h}{h} = \frac {\text{R}}{r}$ —————————— (2)

$\text{H} + h = \frac {\text{R}h}{r}$ ——————————— (3)

Substituting (3) this in (1), we get

$\text{V} = \pi \text{R}^{2} \times \frac{\text{R}h}{3r} – \frac{\pi r^{2} h}{3}$

$=>\text{V} = \frac{\pi h \left(\text{R}^{3} – r^{3} \right)}{3r}$

Now consider (2)

$\frac {H + h}{h} = \frac {\text{R}}{r} => \frac{\text{H}}{h} + 1 = \frac{\text{R}}{r} => \frac{\text{H}}{h} = \frac{\text{R}}{r} – 1 => \frac{\text{H}}{h} = \frac{\text{R} – r}{r}$

Taking reciprocal of both sides

$\frac{h}{\text{H}} = \frac{r}{\text{R} – r} =>h = \frac{\text{H}r}{\text{R} – r}$

Substituting this value of $h$ in the formula, we get

$\text{V} = \frac{\pi}{3} \times \frac{\text{H}r}{\text{R} – r} \times \frac{\text{R}^{3} – r^{3}}{r}$

Now, using the algebraic identity $a^{3} – b^{3} = \left(a – b \right) \left(a^{2} + ab + b^{2} \right)$ to replace $\left(\text{R}^{3} – r^{3} \right)$, we get

$\text{V} = \frac{\pi}{3} \times \frac{\text{H}r}{\text{R} – r} \times \frac{\left(\text{R} – r \right) \left(R^{2} + \text{R}r + r^{2} \right)}{r}$

$=> \text{V} = \frac{\pi H}{3}\left(\text{R}^{2} + \text{R}r + r^{2} \right)$

where $H$ is the height of frustum(perpendicular distance between the two bases of a frustum)

$r$ is the radius of a smaller base of the frustum

$\text{R}$ is the radius of a larger base of the frustum

### Examples

Ex 1: If the radii of the circular ends of a frustum that is $45 cm$ high are $28 cm$ and $7 cm$, find the volume of the frustum.

Height of a frustum $h = 45 cm$.

Radius of lower base $r = 7 cm$.

Radius of upper base $\text{R} = 28 cm$.

Volume of a frustum = $\frac {\pi h}{3}\left( r^{2} + \text{R}^{2} + r\text{R} \right) = \frac {\frac{22}{7} \times 45}{3}\left( 7^{2} + 28^{2} + 7 \times 28 \right)$

$= \frac {\frac{990}{7}}{3}\left(49 + 784 + 196 \right) = \frac {\frac{990}{7}}{3}\times 1029 = 48510 cm^{3}$.

Ex 2: An open plastic drum of height $63 cm$ with radii of lower and upper ends as $15 cm$ and $25 cm$ respectively is filled with milk. Find the cost of milk which can completely fill the bucket at ₹ $45$ per litre.

Height of the container (frustum) $h = 63 cm$.

Radius of lower base $r = 15 cm$.

Radius of upper base $\text{R} = 25 cm$.

Volume of a frustum = $\frac {\pi h}{3}\left( r^{2} + \text{R}^{2} + r\text{R} \right) = \frac {\frac{22}{7}\times 63}{3}\left( 15^{2} + 25^{2} + 15 \times 25 \right)$

$= \frac {198}{3}\left( 225 + 625 + 375 \right) = \frac {198}{3} \times 1225 = 80850 cm^{3} = 80.85 \text{L}$.

Rate of milk = ₹ $45$ per litre

Therefore, the cost of milk = $80.85 \times 45 =$ ₹ $3638.25$.

## Conclusion

A frustum of a cone is obtained by slicing a cone in between by a plane parallel to its base. The volume of frustum is the space occupied by the frustum between the two radii of different measures. The formula to find the volume of frustum of cone is given by $V =\frac {\pi h}{3}\left( r^{2} + \text{R}^{2} + r\text{R} \right)$.

## Practice Problems

1. If the radii of the circular ends of a frustum that is $60 cm$ high are $20 cm$ and $10 cm$, find the volume of the frustum.
2. The circumference of the two ends of a frustum of a cone is $66 cm$ and $132 cm$ respectively and its height is $25 cm$, find the volume of the frustum.
3. A bucket in the form of a frustum of a cone has end diameters of $1 ft$ and $1.5 ft$ and a height of $2.5 ft$, find the volume of water that can be filled in the bucket.

## FAQs

### What do you mean by the frustum of a cone?

The frustum of the cone is the part of the cone without a vertex when the cone is divided into two parts with a plane that is parallel to the base of the cone.

### Do we get a frustum by slicing a cone only?

No, any 3D object obtained by slicing a cone or any type of pyramid is called a frustum.

### How do you find the volume of a frustum of a cone?

If $r$ and $\text{R}$ are the two radii of a frustum of a cone of height $h$, then its volume is calculated using the formula $V =\frac {\pi h}{3}\left( r^{2} + \text{R}^{2} + r\text{R} \right)$.

### What is the general formula for calculating the volume of a frustum?

The general formula for calculating the volume of a frustum is $\text{V} = \frac {h}{3}\left(s_{1} + s_{2} + \sqrt{s_{1}s_{2}} \right)$
where $s_{1}$ and $s_{2}$ are the surface areas of the two bases and $h$ is the height of a frustum.