• Home
• /
• Blog
• /
• Nature of Roots of Quadratic Equation(With Methods & Examples)

# Nature of Roots of Quadratic Equation(With Methods & Examples)

November 3, 2022 This post is also available in: हिन्दी (Hindi)

In real life, the quadratic equations help us in determining the area of space, the speed of a moving object, the value of profit gained on a product, and more. Even the path of a space rocket is described in terms of a quadratic equation. There are various methods of solving quadratic equations

Since the quadratic equations are degree-$2$ equations, they have $2$ roots or zeroes or solutions, which can be real numbers or imaginary numbers. You can determine the nature of the roots of quadratic equation without actually solving them.

Let’s understand how to find the nature of roots of quadratic equation without solving them.

The values of a variable satisfying the given quadratic equation are called its roots. In other words, $x = x_{1}$ is a root of the quadratic equation $f\left(x \right)$, if $f\left(x_{1} \right) = 0$.

The real roots of an equation $f \left(x \right) = 0$ are the $x$-coordinates of the points where the curve $f \left(x \right)$ intersects the $x$-axis. These points are also known as the $x$-intercepts.

## Nature of Roots of Quadratic Equation Based on Coefficients

Depending on the coefficients of a quadratic equation, the roots can be

• one of the roots of the quadratic equation is zero and the other is $-\frac{b}{a}$ if $c = 0$
• both the roots are zero if $b = c = 0$
• The roots are reciprocal to each other if $a = c$

### When $c = 0$

The standard form of a quadratic equation is $ax^{2} + bx + c = 0$

When $c = 0$, then the equation reduces to $ax^{2} + bx = 0$

$=>x \left(ax + b \right) = 0$

$=>x = 0$ or $ax + b = 0$

$=>x = 0$ or $x = -\frac{b}{a}$

### When $b = c = 0$

The standard form of a quadratic equation is $ax^{2} + bx + c = 0$

When $b = c = 0$, then the equation reduces to $ax^{2} = 0$

$=>x^{2} = 0$

$=>x = 0$

Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

## Nature of Roots of Quadratic Equation Based on Discriminant

For a quadratic equation $ax^{2} + bx + c = 0$, the value $b^{2} – 4ac$ is called the discriminant of a quadratic equation and is denoted by either $\text{D}$ or $\triangle$.

The value of the discriminant can be zero $\left(0 \right)$, positive, or negative. Based on the value of a discriminant we can judge the nature of roots of quadratic equation without actually solving it.

• When $\text{D} = \triangle = b^{2} – 4ac = 0$, the two roots are real and equal
• When $\text{D} = \triangle = b^{2} – 4ac > 0$, the two roots are real and unequal
• When $\text{D} = \triangle = b^{2} – 4ac < 0$, the two roots are imaginary

### Examples

Let’s consider some examples to understand the process of checking the nature of roots of a quadratic equation.

Ex 1: Find the nature of roots of a quadratic equation $2x^{2} + 8x + 7 = 0$.

Comparing $2x^{2} + 8x + 7$ with the standard form of quadratic equation $ax^{2} + bx + c$, we get the coefficients of the equation as $a = 2$, $b = 8$, and $c = 7$.

The discriminant of the equation $\text{D} = \triangle = b^{2} – 4ac = 8^{2} – 4 \times 2 \times 7 = 64 – 56 = 8$.

Since, $8 \gt 0$, therefore, the quadratic equation $2x^{2} + 8x + 7 = 0$ has two real unequal roots.

Let’s verify it by solving it.

$2x^{2} + 8x + 7 = 0$

By quadratic formula, $x = \frac{-b \pm \sqrt{b^{2} – 4ac}}{2a}$

$=> x = \frac{-8 \pm \sqrt{8^{2} – 4 \times 2 \times 7}}{2 \times 2}$

$=> x = \frac{-8 \pm \sqrt{8}}{4}$

$=> x = \frac{-8 \pm 2\sqrt{2}}{4}$

$=> x = \frac{-4 \pm \sqrt{2}}{2}$

$=> x = -2 + \frac{\sqrt{2}}{2}$ and $x = -2 – \frac{\sqrt{2}}{2}$

Ex 2: Find the nature of roots of a quadratic equation $x^{2} + 6x + 9 = 0$.

Comparing $x^{2} + 6x + 9$ with the standard form of quadratic equation $ax^{2} + bx + c$, we get the coefficients of the equation as $a = 1$, $b = 6$, and $c = 9$.

The discriminant of the equation $\text{D} = \triangle = b^{2} – 4ac = 6^{2} – 4 \times 1 \times 9 = 36 – 36 = 0$.

Since, $0 = 0$, therefore, the quadratic equation $x^{2} + 6x + 9 = 0$ has two real equal roots.

Ex 3: Find the nature of roots of a quadratic equation $3x^{2} – 2x + 9 = 0$.

Comparing $3x^{2} – 2x + 9 = 0$ with the standard form of quadratic equation $ax^{2} + bx + c$, we get the coefficients of the equation as $a = 3$, $b = -2$, and $c = 9$.

The discriminant of the equation $\text{D} = \triangle = b^{2} – 4ac = \left(-2 \right)^{2} – 4 \times 3 \times 9 = 4 – 108 = -104$.

Since, $-104 \lt 0$, therefore, the quadratic equation $3x^{2} – 2x + 9 = 0$ has no real equal roots.

Note: When a quadratic equation has no real root, it means it has an imaginary root.

## Nature of Roots of Quadratic Equation – Summary

The nature of roots of quadratic equation is summarized as follows.

• If the value of discriminant $\left(\text{D} \right) = 0$ i.e. $b^{2} – 4ac = 0$
• The quadratic equation will have equal roots i.e. $\alpha = \beta = -\frac{b}{2a}$
• If the value of discriminant $\left(\text{D} \right) \lt 0$ i.e. $b^{2} – 4ac \lt 0$
• The quadratic equation will have imaginary roots i.e $\alpha = \left(p + iq \right)$ and $\beta = \left(p – iq \right)$, ehere $iq$ is the imaginary part of a complex number if the value of $\left(\text{D} \right) \gt 0$ i.e. $b^{2} – 4ac \gt 0$
• The quadratic equation will have real roots if the value of discriminant $\left(\text{D} \right) \gt 0$ and $\text{ D }$ is a perfect square
• The quadratic equation will have rational roots if the value of $\left(\text{D} \right) \gt 0$ and $\text{ D }$ is not a perfect square
• The quadratic equation will have irrational roots i.e. $\alpha = \left(p + \sqrt{q} \right)$ and $\beta = \left(p – \sqrt{q} \right)$ if the value of $\left(\text{D} \right) \gt 0$, $\text{D}$ is a perfect square, $a = 1$ and $b$ and $c$ are integers
• The quadratic equation will have integral roots if the value of $\left(\text{D} \right) \gt 0$, $\text{D}$ is a perfect square, $a = 1$ and $b$ and $c$ are integers

## Condition for Common Root or Roots of Quadratic Equations

Let the two quadratic equations are $a_{1}x^{2} + b_{1}x + c_{1} = 0$ and $a_{2}x^{2} + b_{2}x + c_{2} = 0$

Now we are going to find the condition that the above quadratic equations may have a common root.

Let $\alpha$ be the common root of the equations $a_{1}x^{2} + b_{1}x + c_{1} = 0$ and $a_{2}x^{2} + b_{2}x + c_{2} = 0$. Then,

$a_{1} \alpha^{2} + b_{1} \alpha + c_{1} = 0$

$a_{2} \alpha^{2} + b_{2} \alpha + c_{2} = 0$

Now, solving the equations $a_{1} \alpha^{2} + b_{1} \alpha + c_{1} = 0$, $a_{2} \alpha^{2} + b_{2} \alpha + c_{2} = 0$ by cross-multiplication, we get

$\frac{\alpha^{2}}{b_{1}c_{2} – b_{2}c_{1}} = \frac{α}{c_{1}a_{2} – c_{2}a_{1}} = \frac{1}{a_{1}b_{2} – a_{2}b_{1}}$

$=> \alpha = \frac{b_{1}c_{2} – b_{2}c_{1}}{c_{1}a_{2} – c_{2}a_{1}}$, (From first two)

Or, $\alpha = \frac{c_{1}a_{2} – c_{2}a_{1}}{a_{1}b_{2} – a_{2}b_{1}}$, (From $2^{nd}$ and $3^{rd}$)

$=>\frac{b_{1}c_{2} – b_{2}c_{1}}{c_{1}a_{2} – c_{2}a_{1}} = \frac{c_{1}a_{2} – c_{2}a_{1}}{a_{1}b_{2} – a_{2}b_{1}}$

$=> \left(c_{1}a_{2} – c_{2}a_{1} \right)^{2} = \left(b_{1}c_{2} – b_{2}c_{1} \right) \left(a_{1}b_{2} – a_{2}b_{1} \right)$, which is the required condition for one root to be common of two quadratic equations.

### Examples

Ex 1: For what value of $k$, both the quadratic equations $6x^{2} – 17x + 12 = 0$ and $3x^{2} – 2x + k = 0$ will have a common root.

If one of the root of quadratic equations $a_{1}x^{2} + b_{1}x + c_{1} = 0$ and $a_{2}x^{2} + b_{2}x + c_{2} = 0$ is common then

$\left(a_{1}b_{2} – a_{2}b_{1} \right) \left(b_{1}c_{2} – b_{2}c_{1} \right) = \left(a_{2}c_{1} – a_{1}c_{2} \right)^{2}$ —————————(1)

Form the given quadratic Equations, $a_{1} = 6$, $b_{1} = -17$, $c_{1} = 12$, $a_{2} = 3$, $b_{2} = -2$ and $c_{2} = k$.

On substituting these values in equation (1), we will get:

$\left( \left(6 \times \left(-2 \right) \right) – \left(3\times \left(-17 \right) \right) \right) \times \left(-17k – \left(-2 \times 12 \right) \right) = \left( 3 \times 12 – 6k \right)^{2}$

$=>-663k + 936 = 1296 + 36k^{2} – 432k$

$=>36k^{2} + 231k + 360 = 0$

$=>12k^{2} + 125k + 120 = 0$

$=> \left(4k + 15 \right) \left(3k + 8 \right) = 0$

Therefore, the values of $k$ are $-\frac{15}{4}$, $-\frac{8}{3}$.

Ex 2: Find the values of $k$ such that the quadratic equations $x^{2} – 11x + k = 0$ and $x^{2} – 14x + 2k = 0$ have a common factor.

Let $\left(x – \alpha \right)$ be the common factor of quadratic equations $x^{2} – 11x + k = 0$ and $x^{2} – 14x + 2k = 0$ then $x = \alpha$ will satisfy the given quadratic equations.

Therefore, $\alpha^{2} – 11 \alpha + k = 0$ ———————- (1)

And, $\alpha^{2} – 14 \alpha + 2k = 0$  ——————— (2)

On Solving Equation (1) and Equation (2) we will get:

$\frac{\alpha^{2}}{-22k + 14k} = -\frac{\alpha}{2k – k} = \frac{1}{-14 + 11}$

Therefore, $α^{2} = \frac{-22k + 14k}{-3} = \frac{8k}{3}$ ——————— (3)

And, $\alpha = \frac{2k – k}{-14 + 11} = \frac{k}{3} ———————– (4) On Equating Equation (3) and Equation (4):$\frac{8k}{3} = \left(\frac{k}{3} \right)^{2}

Therefore, the value of $k = 24$.

## Practice Problems

1. Find the nature of roots for the following quadratic equations
• $2x^{2} + 5x – 3$
• $x^{2} – 7x – 2$
• $4x^{2} + x + 6$
• $2x^{2} – 2x + 1$
2. For what value(s) of $k$, do the following quadratic equations have equal real roots
• $kx^{2} + x – 2$
• $2x^{2} + 4x + 8$
3. For what value(s) of $k$, do the following quadratic equations have no real roots
• $x^{2} + kx – 5$