• Home
• /
• Blog
• /
• Multiplication of Complex Numbers(With Examples)

# Multiplication of Complex Numbers(With Examples)

August 20, 2022 This post is also available in: हिन्दी (Hindi)

Multiplication is one of the four basic operations in math. Multiplication is a complex operation as compared to the addition and subtraction of complex numbers. A complex number is of the form $a + ib$, where $i$ is an imaginary number and $a$ and $b$ are real numbers.

The working mechanism of the multiplication of complex numbers is similar to the multiplication of binomials using the distributive property. In this article, you’ll learn how to multiply complex numbers.

## Multiplication of Two Complex Numbers

Multiplication of two complex numbers is similar to the multiplication of two binomial expressions using the FOIL method.

Mathematically, if we have two complex numbers $z_{1} = a + ib$ and $z_{2} = c + id$, then multiplication of complex numbers $z_{1}$ and $z_{2}$ is written as $z_{1}z_{2} = \left(a + ib \right) \left(c + id \right)$.

Now, we use the FOIL method of multiplication of two binomials. $\left(a + b \right) \left(c + d \right) = ac + ad + bc + bd$.

Therefore, the formula for multiplying complex numbers is given as: $\left(a + ib \right) \left(c + id \right) = ac + iad + ibc + i^{2}bd$

$=> \left(a + ib \right) \left(c + id \right) = \left(ac – bd \right) + i \left(ad + bc \right)$ $\left(\text { Because } i^{2} = -1 \right)$.

Note: The FOIL method:

• The first means that we multiply the terms which occur in the first position of each binomial.
• The outer means that we multiply the terms which are located in both ends (outermost) of the two binomials when written side-by-side.
• The inner means that we multiply the middle two terms of the binomials when written side-by-side.
• The last means that we multiply the terms which occur in the last position of each binomial.
• After obtaining the four (4) partial products coming from the first, outer, inner and last, we simply add them together to get the final answer.
Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

### Examples

Ex 1: Find the product of $3 + 2i$ and $1 + 3i$.

Here, $z_{1} = a + ib = 3 + 2i$ and $z_{2} = c + id = 1 + 3i$.

So, $a = 3$, $b = 2$, $c = 1$ and $d = 3$.

$\left(a + ib \right) \left(c + id \right) = \left(ac – bd \right) + i \left(ad + bc \right)$

$=>\left(3 + 2i \right) \left(1 + 3i \right) = \left(3 \times 1 – 2 \times 3 \right) + i \left(3 \times 3 + 2 \times 1 \right)$

$=>\left(3 + 2i \right) \left(1 + 3i \right) = \left(3 – 6 \right) + i \left(9 + 2 \right)$

$=>\left(3 + 2i \right) \left(1 + 3i \right) = -3 + 11i$

Ex 2: Find the product of $5 – 3i$ and $4 + 2i$.

Here, $z_{1} = a + ib = 5 – 3i$ and $z_{2} = c + id = 4 + 2i$.

So, $a = 5$, $b = -3$, $c = 4$ and $d = 2$.

$\left(a + ib \right) \left(c + id \right) = \left(ac – bd \right) + i \left(ad + bc \right)$

$=>\left(5 – 3i \right) \left(4 + 2i \right) = \left(5 \times 4 – \left(-3 \right) \times 2 \right) + i \left(5 \times 2 + \left(-3 \right) \times 4 \right)$

$=>\left(5 – 3i \right) \left(4 + 2i \right) = \left(20 + 6 \right) + i \left(10 – 12 \right)$

$=>\left(5 – 3i \right) \left(4 + 2i \right) = 26 – 2i$

## Multiplication Of Complex Numbers in Polar Form

A complex number in polar form is written as $z = r \left(\cos \theta + i \sin \theta \right)$, where $r$ is the modulus of the complex number and $\theta$ is its argument. Now, the formula for multiplying complex numbers $z_{1} = r_{1} \left(\cos \theta_{1} + i \sin \theta_{1} \right)$ and $z_{2} = r_{2} \left(\cos \theta_{2} + i \sin \theta_{2} \right)$ in polar form is given as:

$z_{1}z_{2} = (r_{1} \left(\cos \theta_{1} + i \sin \theta_{1} \right))(r_{2} \left( \cos \theta_{2} + i \sin \theta_{2} \right))$

$= r_{1} r_{2} \left(\cos \theta_{1} \cos \theta_{2} + i \cos \theta_{1} \sin \theta_{2} + i \sin \theta_{1} \cos \theta_{2} + i^{2} \sin \theta_{1} \sin \theta_{2} \right)$

$= r_{1} r_{2} \left(\cos \theta_{1} \cos \theta_{2} + i \cos \theta_{1} \sin \theta_{2} + i \sin \theta_{1} \cos \theta_{2} – \sin \theta_{1} \sin \theta_{2} \right)$ $\left( \text { Because } i^{2} = -1 \right)$

$= r_{1} r_{2} \left( \cos \theta_{1} \cos \theta_{2} – \sin \theta_{1} \sin \theta_{2} + i \left( \cos \theta_{1} \sin \theta_{2} + \sin \theta_{1} \cos \theta_{2} \right) \right)$

$= r_1 r_2 \left( \cos \left(\theta_{1} + \theta_{2} \right) + i \sin \left(\theta_{1} + \theta_{2} \right) \right)$ $\left( \text { Because } \cos a \cos b – \sin a \sin b = \cos \left(a + b \right) \text { and } \sin a \cos b + \sin b \cos a = \sin \left(a + b \right) \right)$

Hence the formula for multiplying complex numbers in polar form is $\left( r_{1} \left(\cos \theta_{1} + i \sin \theta_{1} \right) \right) \left(r_{2} \left(\cos \theta_{2} + i \sin \theta_{2} \right) \right) = r_{1} r_{2} \left(\cos \left(\theta_{1} + \theta_{2} \right) + i \sin \left(\theta_{1} + \theta_{2} \right) \right)$.

### Examples

Ex 1: Find the product of $2(\cos \frac {\pi}{6} + i \sin \frac {\pi}{6})$ and $3(\cos \frac {\pi}{3} + i \sin \frac {\pi}{3})$.

Here, $r_{1} = 2$, $r_{2} = 3$, $\theta_{1} = \frac {\pi}{6}$, and $\theta_{2} = \frac {\pi}{3}$

Therefore, $2\left(\cos \frac {\pi}{6} + i \sin \frac {\pi}{6} \right) \times 3\left(\cos \frac {\pi}{3} + i \sin \frac {\pi}{3} \right)$

$= 2 \times 3 \left(\cos \left(\frac {\pi}{6} + \frac {\pi}{3} \right) + i \sin \left(\frac {\pi}{6} + \frac {\pi}{3} \right) \right)$

$= 6 \left(\cos \frac {\pi}{2} + i \sin \frac {\pi}{2} \right)$

## Properties of Multiplication of Complex Numbers

Following are the properties of the multiplication of complex numbers:

• Closure Property: The product of complex numbers is also a complex number. Hence, it holds the closure property.
• Commutative Property: The multiplication of complex numbers is commutative.
• Associative Property: The multiplication of complex numbers is associative.
• Distributive Property: The multiplication of complex numbers is distributive over addition and subtraction.
• Multipliative Identity: $1 + 0i$ is the multiplicative identity of the complex numbers, i.e., for a complex number $z$, we have $z \times \left(1 + 0i \right) = \left(1 + 0i \right) \times z = z$.
• Multipliative Inverse: For a complex number $z$, the multiplicative inverse in complex numbers is $\frac {1}{z}$, i.e., $z \times \frac {1}{z} = \frac {1}{z} \times z = 1 + 0i$.

## Conclusion

The process of multiplication of two complex numbers is similar to the process of multiplication of two binomial expressions. For multiplication of complex numbers closure property, commutative property, associative property, and distributive property hold, and there exist multiplicative identity and multiplicative inverse for complex numbers.

## Practice Problems

Find the product of the following complex numbers

• $z_{1} = 2 – 3i$, $z_2 = 5 + i$
• $z_{1} = -3 + 2i$, $z_2 = 3 + 4i$
• $z_{1} = 1 – i$, $z_2 = 1 + i$
• $z_{1} = 4 + 2i$, $z_2 = -2 – 3i$
• $z_{1} = 1 – 5i$, $z_2 = 4 + 6i$
• $z_{1} = 3\left(\cos \frac {\pi}{3} + i\sin \frac {\pi}{3}\right)$, $z_{2} = 5\left(\cos \frac {\pi}{2} + i\sin \frac {\pi}{2}\right)$
• $z_{1} = -2\left(\cos \frac {\pi}{4} + i\sin \frac {\pi}{4}\right)$, $z_{2} = 2\left(\cos \frac {\pi}{6} + i\sin \frac {\pi}{6}\right)$

## FAQs

### What is the multiplication of complex numbers formula?

The formula to multiply two complex numbers $z_{1} = a + ib$ and $z_{2} = c + id$ is $\left(a + ib \right) \left(c + id \right) = \left(ac – bd \right) + i \left(ad + bc \right)$.

### What is the multiplication of complex numbers in the polar form formula?

The formula to multiply two complex numbers in polar form $z_{1} = r_{1} \left(\cos \theta_{1} + i \sin \theta_{1} \right)$ and $z_{2} = r_{2} \left(\cos \theta_{2} + i \sin \theta_{2} \right)$ is $r_{1} r_{2} \left(\cos \left(\theta_{1} + \theta_{2} \right) + i \sin \left(\theta_{1} + \theta_{2} \right) \right)$.

### What Happens When You Multiply Two Imaginary Numbers?

When two imaginary numbers are multiplied, the result is a real number, since $i \times i = -1$.