• Home
  • /
  • Blog
  • /
  • Linear Equations in Two Variables – Definition, Types, and Graphs

Linear Equations in Two Variables – Definition, Types, and Graphs

linear equations in two variables

This post is also available in: हिन्दी (Hindi)

Linear equations in one variable of the form $ax + b = 0$ are the equations that have a unique solution (or only one solution) and the solution of such equations consists of a single number that can be represented on a number line. On the other hand, linear equations in two variables are the equations of the form $ax + by + c = 0$. The solution of such equations is an ordered pair of the form $\left(x, y \right)$, where $x$ denotes $x$-coordinnate and $y$ denotes the $y$-coordinate on a Cartesian plane.

Let’s understand what are linear equations in two variables and what are its different types and its solutions with examples.

What are Linear Equations in Two Variables?

An equation is called a linear equation in two variables if it is written in the form of $ax + by + c =0$, where $a$, $b$, and $c$ are real numbers and the coefficients of the variables $x$ and $y$, i.e $a$ and $b$ respectively, are not equal to zero.

For example, $2x + 5y = 7$ and $-x + 3y = 5$ are linear equations in two variables.

The solution for such an equation is a pair of values (ordered pair), one for $x$ and one for $y$ which makes the two sides (LHS and RHS)of an equation equal. The solutions of a linear equation in two variables can be represented on a Cartesian plane, i.e., $xy$-plane.

linear equations in two variables

Examples

Let’s understand the variables and coefficients in linear equations in two variables with a few examples.

Ex 1: What are the variables in the equation $-3m + 2n + 7 = 0$?

The equation $-3m + 2n + 7 = 0$ is of the form $ax + by + c = 0$.

Comparing the equation $-3m + 2n + 7 = 0$ with $ax + by + c = 0$, we get

$x = m$ and $y = n$, therefore, the variables are $m$ and $n$, or we can say that $-3m + 2n + 7 = 0$ is a linear equation in two variables with variables $m$ and $n$.

Ex 2: Identify the coefficient(s) and constant(s) in the equation $7x + 2y + 8 = 0$.

The equation $7x + 2y + 8 = 0$ is of the form $ax + by + c = 0$.

Comparing the equation $7x + 2y + 8 = 0$ with $ax + by + c = 0$, we get $a = 7$, $b = 2$ and $c = 8$.

Therefore, the coefficients of the equation $7x + 2y + 8 = 0$ are $7$ and $2$, $7$ is the coefficient of $x$ and $2$ is the coefficient of $y$.

And, the constant in the equation $7x + 2y + 8 = 0$ is $8$.

Ex 3: Identify the coefficient(s) and constant(s) in the equation $5x – 3y = 9$.

The equation $5x – 3y = 9$ can be written as $5x – 3y – 9 = 0$ (Shifting $9$ from RHS to LHS).

Now, the equation $5x – 3y – 9 = 0$ is of the form $ax + by + c = 0$.

Comparing the equation $5x – 3y – 9 = 0$ with $ax + by + c = 0$, we get $a = 5$, $b = -3$ and $c = -9$.

Therefore, the coefficients of the equation $5x – 3y = 9$ are $5$ and $-3$, $5$ is the coefficient of $x$ and $-3$ is the coefficient of $y$.

And, the constant in the equation $5x – 3y = 9$ is $-9$.

Is your child struggling with Maths?
frustrated-kid
We can help!
Country
  • Afghanistan 93
  • Albania 355
  • Algeria 213
  • American Samoa 1-684
  • Andorra 376
  • Angola 244
  • Anguilla 1-264
  • Antarctica 672
  • Antigua & Barbuda 1-268
  • Argentina 54
  • Armenia 374
  • Aruba 297
  • Australia 61
  • Austria 43
  • Azerbaijan 994
  • Bahamas 1-242
  • Bahrain 973
  • Bangladesh 880
  • Barbados 1-246
  • Belarus 375
  • Belgium 32
  • Belize 501
  • Benin 229
  • Bermuda 1-441
  • Bhutan 975
  • Bolivia 591
  • Bosnia 387
  • Botswana 267
  • Bouvet Island 47
  • Brazil 55
  • British Indian Ocean Territory 246
  • British Virgin Islands 1-284
  • Brunei 673
  • Bulgaria 359
  • Burkina Faso 226
  • Burundi 257
  • Cambodia 855
  • Cameroon 237
  • Canada 1
  • Cape Verde 238
  • Caribbean Netherlands 599
  • Cayman Islands 1-345
  • Central African Republic 236
  • Chad 235
  • Chile 56
  • China 86
  • Christmas Island 61
  • Cocos (Keeling) Islands 61
  • Colombia 57
  • Comoros 269
  • Congo - Brazzaville 242
  • Congo - Kinshasa 243
  • Cook Islands 682
  • Costa Rica 506
  • Croatia 385
  • Cuba 53
  • Cyprus 357
  • Czech Republic 420
  • Denmark 45
  • Djibouti 253
  • Dominica 1-767
  • Ecuador 593
  • Egypt 20
  • El Salvador 503
  • Equatorial Guinea 240
  • Eritrea 291
  • Estonia 372
  • Ethiopia 251
  • Falkland Islands 500
  • Faroe Islands 298
  • Fiji 679
  • Finland 358
  • France 33
  • French Guiana 594
  • French Polynesia 689
  • French Southern Territories 262
  • Gabon 241
  • Gambia 220
  • Georgia 995
  • Germany 49
  • Ghana 233
  • Gibraltar 350
  • Greece 30
  • Greenland 299
  • Grenada 1-473
  • Guadeloupe 590
  • Guam 1-671
  • Guatemala 502
  • Guernsey 44
  • Guinea 224
  • Guinea-Bissau 245
  • Guyana 592
  • Haiti 509
  • Heard & McDonald Islands 672
  • Honduras 504
  • Hong Kong 852
  • Hungary 36
  • Iceland 354
  • India 91
  • Indonesia 62
  • Iran 98
  • Iraq 964
  • Ireland 353
  • Isle of Man 44
  • Israel 972
  • Italy 39
  • Jamaica 1-876
  • Japan 81
  • Jersey 44
  • Jordan 962
  • Kazakhstan 7
  • Kenya 254
  • Kiribati 686
  • Kuwait 965
  • Kyrgyzstan 996
  • Laos 856
  • Latvia 371
  • Lebanon 961
  • Lesotho 266
  • Liberia 231
  • Libya 218
  • Liechtenstein 423
  • Lithuania 370
  • Luxembourg 352
  • Macau 853
  • Macedonia 389
  • Madagascar 261
  • Malawi 265
  • Malaysia 60
  • Maldives 960
  • Mali 223
  • Malta 356
  • Marshall Islands 692
  • Martinique 596
  • Mauritania 222
  • Mauritius 230
  • Mayotte 262
  • Mexico 52
  • Micronesia 691
  • Moldova 373
  • Monaco 377
  • Mongolia 976
  • Montenegro 382
  • Montserrat 1-664
  • Morocco 212
  • Mozambique 258
  • Myanmar 95
  • Namibia 264
  • Nauru 674
  • Nepal 977
  • Netherlands 31
  • New Caledonia 687
  • New Zealand 64
  • Nicaragua 505
  • Niger 227
  • Nigeria 234
  • Niue 683
  • Norfolk Island 672
  • North Korea 850
  • Northern Mariana Islands 1-670
  • Norway 47
  • Oman 968
  • Pakistan 92
  • Palau 680
  • Palestine 970
  • Panama 507
  • Papua New Guinea 675
  • Paraguay 595
  • Peru 51
  • Philippines 63
  • Pitcairn Islands 870
  • Poland 48
  • Portugal 351
  • Puerto Rico 1
  • Qatar 974
  • Romania 40
  • Russia 7
  • Rwanda 250
  • Réunion 262
  • Samoa 685
  • San Marino 378
  • Saudi Arabia 966
  • Senegal 221
  • Serbia 381 p
  • Seychelles 248
  • Sierra Leone 232
  • Singapore 65
  • Slovakia 421
  • Slovenia 386
  • Solomon Islands 677
  • Somalia 252
  • South Africa 27
  • South Georgia & South Sandwich Islands 500
  • South Korea 82
  • South Sudan 211
  • Spain 34
  • Sri Lanka 94
  • Sudan 249
  • Suriname 597
  • Svalbard & Jan Mayen 47
  • Swaziland 268
  • Sweden 46
  • Switzerland 41
  • Syria 963
  • Sao Tome and Principe 239
  • Taiwan 886
  • Tajikistan 992
  • Tanzania 255
  • Thailand 66
  • Timor-Leste 670
  • Togo 228
  • Tokelau 690
  • Tonga 676
  • Trinidad & Tobago 1-868
  • Tunisia 216
  • Turkey 90
  • Turkmenistan 993
  • Turks & Caicos Islands 1-649
  • Tuvalu 688
  • U.S. Outlying Islands
  • U.S. Virgin Islands 1-340
  • UK 44
  • US 1
  • Uganda 256
  • Ukraine 380
  • United Arab Emirates 971
  • Uruguay 598
  • Uzbekistan 998
  • Vanuatu 678
  • Vatican City 39-06
  • Venezuela 58
  • Vietnam 84
  • Wallis & Futuna 681
  • Western Sahara 212
  • Yemen 967
  • Zambia 260
  • Zimbabwe 263
Age Of Your Child
  • Less Than 6 Years
  • 6 To 10 Years
  • 11 To 16 Years
  • Greater Than 16 Years

Graph of a Linear Equation in Two Variables

A linear equation in two variables can be represented as a straight line on a Cartesian plane, i.e., $xy$-coordinate axes. Since the graph is a straight line (linear), therefore, the equations of the form $ax + by + c = 0$ are called linear equations and as there are two variables in it, hence the name ‘linear equation in two variables’.

linear equations in two variables

To plot the graph of a linear equation $ax + by + c = 0$, we consider some arbitrary values of $x$ and get their corresponding $y$ values and then plot those points on a Cartesian plane. These points are then joined by a straight line which represents the equation $ax + by + c = 0$.

Note: To plot a straight line, only two points are enough.

Examples

Let’s consider an example to understand how a graph of a linear equation in two variables is plotted.

Ex 1: Represent the equation $3x + 4y – 12 = 0$ graphically.

$3x + 4y – 12 = 0 => 3x + 4y = 12$

Substituting $x = 0$ in the equation, we get  $0 + 4y = 12 => y = \frac{12}{4} => y = 3$.

Therefore, one point lying on the graph of $3x + 4y – 12 = 0$ is $(0, 3)$.

Substituting $y = 0$ in the equation, we get  $3x + 0 = 12 => x = \frac{12}{3} => x = 4$.

Therefore, another point lying on the graph of $3x + 4y – 12 = 0$ is $(4, 0)$.

linear equations in two variables

Now, plotting the points $\left(0, 3 \right)$ and $\left(4, 0 \right)$ on a Cartesian plane, we get a straight line representing the equation $3x + 4y – 12 = 0$.

linear equations in two variables

Graph of Horizontal Line

The general equation of a linear equation in two variables is of the form $ax + by + c = 0$, where $a$ and $b$ are coefficients of the variables $x$ and $y$ respectively and $c$ is a constant. Further $a$, $b$, and $c$ are real numbers. When the coefficient $a = 0$, then the equation reduces to the form $by + c = 0$, which can also be written as $by = -c$. This equation represents a straight horizontal line parallel to $x$-axis and perpendicular to $y$-axis and crossing the $y$-axis at a point $\left(0, -\frac {c}{b} \right)$. The point $\left(0, -\frac {c}{b} \right)$ is called the $y$-intercept of a line $by + c = 0$.

Example

Ex 1: Represent the equation $2y – 18 = 0$.

$2y – 18 = 0 => 2y = 18 => y = \frac{18}{2} => y = 9$

Therefore, the line $2y – 18 = 0$ passes through a point $\left(0, 9 \right)$ which is parallel to $x$-axis and perpendicular to $y$-axis. The line has $y$-intercept $\left(0, 9\right)$.

linear equations in two variables

Graph of Vertical Line

The general equation of a linear equation in two variables is of the form $ax + by + c = 0$, where $a$ and $b$ are coefficients of the variables $x$ and $y$ respectively and $c$ is a constant. Further $a$, $b$, and $c$ are real numbers. When the coefficient $b = 0$, then the equation reduces to the form $ax + c = 0$, which can also be written as $ax = -c$. This equation represents a straight horizontal line parallel to $y$-axis and perpendicular to $x$-axis and crossing the $x$-axis at a point $\left(-\frac {c}{a}, 0 \right)$. The point $\left(-\frac {c}{a}, 0 \right)$ is called the $x$-intercept of a line $ax + c = 0$.

Example

Ex 1: Represent the equation $3x – 15 = 0$.

$3x – 15 = 0 => 3x = 15 => x = \frac{15}{3} => x = 5$

Therefore, the line $3x – 15 = 0$ passes through a point $\left(5, 0 \right)$ which is parallel to $y$-axis and perpendicular to $x$-axis. The line has $x$-intercept $\left(5, 0\right)$.

linear equations in two variables

Graph of Slanted Line

The general equation of a linear equation in two variables is of the form $ax + by + c = 0$, where $a$ and $b$ are coefficients of the variables $x$ and $y$ respectively and $c$ is a constant. Further $a$, $b$, and $c$ are real numbers. When both the coefficients $a$ and $b$ are non-zeroes, then the graph of the equation $ax + by + c = 0$ will be a slanted line.

Examples

Ex 1: Represent the equation $3x + 4y – 12 = 0$.

$3x + 4y – 12 = 0 => 3x + 4y = 12$

Substituting $x = 0$ in the equation, we get  $0 + 4y = 12 => y = \frac{12}{4} => y = 3$.

Therefore, one point lying on the graph of $3x + 4y – 12 = 0$ is $(0, 3)$.

Substituting $y = 0$ in the equation, we get  $3x + 0 = 12 => x = \frac{12}{3} => x = 4$.

Therefore, another point lying on the graph of $3x + 4y – 12 = 0$ is $(4, 0)$.

linear equations in two variables

Now, plotting the points $\left(0, 3 \right)$ and $\left(4, 0 \right)$ on a Cartesian plane, we get a straight line representing the equation $3x + 4y – 12 = 0$.

linear equations in two variables

Solution of Linear Equations in Two Variables

We learned that when a linear equation in two variables of the form $ax + by + c = 0$ is plotted in a Cartesian plane, we get a straight line. Any point lying on the line $ax + by + c = 0$ will be the solution of the equation $ax + by + c = 0$.

Since there are infinite points lying on the line $ax + by + c = 0$, therefore, there exist infinite (countless) solutions for any linear equation in two variables.

As there are two variables in a linear equation of the form $ax + by + c = 0$, a solution means a pair of values, one for $x$ and one for $y$ which satisfy the given equation. 

Let us consider the equation $2x + 3y = 12$. Here, $x = 3$ and $y = 12$ is a solution because when you substitute $x = 3$ and $y = 2$ in the equation, we get $2 \times 3 + 3 \times 2 = 12$, which is the RHS of the equation.

Similarly, when you substitute $x = 0$ and $y = 4$ in the equation, we get $2 \times 0 + 3 \times 4 = 12$, which is also the RHS of the equation. 

And also, when you substitute $x = 6$ and $y = 0$ in the equation, we get $2 \times 6 + 3 \times 0 = 12$, which again is the RHS of the equation. 

So, we see that all these points $\left(3, 2 \right)$, $\left(0, 4 \right)$, and $\left(6, 0 \right)$ are the solutions of the equation $2x + 3y = 12$.

In fact, there are infinite solutions for the equation $2x + 3y = 12$ and in general for any linear equation of the form $ax + by = c$.

Like & Unlike Fractions

Equations of $x$ and $y$ Axes

We learned above that any

  • linear equation of the form $ax + c = 0$ is parallel to $y$-axis or perpendicular to $x$-axis
  • linear equation of the form $by + c = 0$ is parallel to $x$-axis or perpendicular to $y$-axis

When $c$ becomes $0$ in the equation $ax + c = 0$, we get $ax = 0 => x = \frac {0}{a} => x = 0$, which is the equation of $y$-axis.

Similarly, when $c$ becomes $0$ in the equation $by + c = 0$, we get $by = 0 => y = \frac {0}{b} => y = 0$, which is the equation of $x$-axis.

linear equations in two variables

Difference Between Linear Equations in One Variable and Two Variables

These are the differences between linear equations in one variable and linear equations in two variables.

linear equations in two variables

Practice Problems

  1. Identify the coefficient(s) and constant(s) in the following equations
    • $3x – 4y + 7 = 0$
    • $2x + 5y – 8 = 0$
    • $x = 5$
    • $2y = -7$
  2. Represent the following equations graphically.
    • $2x – 4y + 8 = 0$
    • $3x + 5y – 15 = 0$ 
    • $2x + 6y – 12 = 0$
    • $6x – 9y + 36 = 0$
  3. Find any four solutions for the following equations.
    • $x – y – 8 = 0$
    • $4x + 3y + 14 = 0$
    • $7x – 3y – 21 = 0$
    • $5x + 2y + 20 = 0$

FAQs

What is meant by linear equations in two variables?

A linear equation is an equation with degree 1. A linear equation in two variables is a type of linear equation in which there are two variables. 

For example, $x – 2y = 4$, $2x + 3y =14$, etc. are linear equations in two variables.

How do you identify linear equations in two variables?

We can identify a linear equation in two variables if it is expressed in the form $ax + by + c = 0$, consisting of two variables $x$ and $y$, and the highest degree of the given equation is $1$.

How many solutions does a linear equation in two variables have?

A linear equation in two variables has an infinite number of solutions. All the points lying on the line $ax + by + c = 0$ are the solutions of the equation $ax + by + c = 0$.

How will you check whether a given point is a solution of a linear equation in two variables?

If substituting the values of $x$ and $y$ from a point $(x, y)$ in the equation $ax + by + c = 0$ makes LHS and RHS, it means that $(x, y)$ is the solution of $ax + by + c = 0$, otherwise not.

For example, consider the equation $3x + 5y – 30 = 0$.

A point $\left(5, 3 \right)$ is the solution of the equation $3x + 5y + 30 = 0$, because $3 \times 5 + 5 \times 3 – 30 = 0$, whereas $\left(3, 5 \right)$ is not the solution of the equation $3x + 5y + 30 = 0$, because $3 \times 3 + 5 \times 5 – 30 = 9 + 25 – 30 = 4$, which is not equal to the RHS of the equation.

Conclusion

The equations of the form $ax + by + c = 0$ are called linear equations in two variables and such equations have infinite solutions. All the points lying on the line represented by $ax + by + c = 0$ are the solutions of the equation.

Recommended Reading

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
>