• Home
• /
• Blog
• /
• Factorization of Polynomials – Methods & Examples

# Factorization of Polynomials – Methods & Examples

November 5, 2022 This post is also available in: हिन्दी (Hindi)

In mathematics, a factor is an entity(a number, a polynomial, a function, a matrix, etc) that divides another entity, leaving no remainder. Factorization or factoring is defined as the breaking or decomposition of an entity. Factorization provides a standard method for solving higher-order equations and simplifying complicated expressions. It is also useful in graphing functions.

Let’s understand what the factorization of polynomials is and what are the different methods of factoring the polynomials.

## What is Factoring of Polynomials?

Factoring polynomials is actually the reverse process of the multiplication of polynomials.

For example $(x + 1)(x – 2)(x + 3) = x^3 + 2x^2 – 5x – 6$, then writing $x^3 + 2x^2 – 5x – 6$ in the form $(x + 1)(x – 2)(x + 3)$ is factoring of the polynomial $x^3 + 2x^2 – 5x – 6$.

Factoring polynomials means decomposing the given polynomial into a product of two or more polynomials. Factoring polynomials help in simplifying the polynomials easily.  It also helps in finding the values of the variables of the given expression or finding the zeros of the polynomial expression.

For example, if we want to find the zeroes or the roots of the polynomial $x^3 + 2x^2 – 5x – 6$, then we factor the polynomial as $(x + 1)(x – 2)(x + 3)$ and then can find the zeroes or the roots easily by equating each of the terms to zero.

$(x + 1) = 0 => x = -1$, $(x – 2) = 0 => x = 2$, and $(x + 3) = 0 => x = -3$. So, we get zeroes of the polynomial $x^3 + 2x^2 – 5x – 6$ as $x = -1$, $x = 2$, and $x = -3$.

The process of decomposing polynomials into their prime factors and writing the polynomials as a product of their prime factors is called factorization of polynomials.

Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

## How to Find Factors of a Polynomial?

The steps followed to find factors of a polynomial are

• Factor out if there is a factor common to all the terms of the polynomial.
• Identify the appropriate method for factoring polynomials. You can use regrouping or algebraic identities to find the factors of the polynomial.
• Write the polynomial as the product of its factors.

## Methods of Factoring Polynomials

There are various methods of factoring polynomials, based on the expression. The method of factorization depends on the degree of the polynomial and the number of variables included in the expression. The four most commonly used methods of factoring polynomials are

• Method of Common Factors
• Grouping Method
• Factoring by splitting terms
• Factoring Using Algebraic Identities

### 1. Method of Common Factors

This is the simplest method of factoring a polynomial. In this method, factorization is done by taking common factors of each of the terms of the given expression.

The steps involved in this method are

Step 1: Find the GCF(Greatest Common Factor) of all the terms in the polynomial.

Step 2: Express each term as a product of the GCF and another factor.

Step 3: Use the distributive property to factor out the GCF.

### Examples

Ex 1: Factorize $3x^5 – 12x^3$

First of all find GCF of each term of $3x^5 – 12x^3$

So, the GCF of $3x^5$ and $12x^3$ is $3 \times x \times x \times x = 3x^{3}$.

Now, expressing each term as a product of $3x^{3}$.

$3x^5 = 3x^3 \times x^2$ and $12x^3 = 3x^3 \times 4$.

So, the polynomial can be written as $3x^3 \times x^2 – 3x^3 \times 4$

Now, in the last step factor out the GCF $3x^3 \left(x^2 – 4 \right)$.

Ex 2: Factorize $10x^2 + 25x + 15$

$10x^2 + 25x + 15 = 5 \times x \times x + 5 \times 5 \times x + 5 \times 3$

$=5 \left(2x^2 + 5x + 3 \right)$

Ex 3: Factorize $3xy^2 + 12x^2y$

$3xy^2 + 12x^2y = 3 \times x \times y \times y + 3 \times 4 \times x \times x \times y$

$= 3xy \times y + 3xy \times 4x = 3xy \left(y + 4x \right)$

Ex 4: $4pq^2 – 20pq – 8p^2q$

$4pq^2 – 20pq – 8p^2q = 4 \times 2 \times p \times q \times q – 4 \times 5 \times p \times q – 4 \times 2 \times p \times p \times q$

$= 4pq \times q + 4pq \times (-5) + 4pq \times (-2p)$

$=4pq(q – 5 – 2p)$

### 2. Grouping Method

Factorization by grouping means that before factoring, we must first group the terms with common factors and then take the common out of them.

The steps involved in this method are

Step 1: Check whether there is any common factor between two pairs of adjacent terms (like $1^{st}$ and $2^{nd}$, $3^{rd}$ and $4^{th}$, $5^{th}$ and $6^{th}$, and so on)

Step 2: If there are no common factors between two adjacent terms, then rearrange the terms

Step 3: Group the first two terms together and then the last two terms together

Step 4: Factor out a GCF from each separate binomial

Step 5: Factor out the common binomial.

### Examples

Ex 1: $3xy + 21x – 2y – 14$

For first two terms, GCF is $3x$ and for next two terms GCF is $-2$

Now, group first, second and third, fourth terms

$3xy + 21x – 2y – 14 = (3xy + 21x) + (- 2y – 14)$

Now take out the common factor of each pair

$(3xy + 21x) + (- 2y – 14) = 3x(y + 7) – 2(y + 7)$

Each of the two terms in the resultant expression has a common term $(y + 7)$.

Take out $(y + 7)$ from each of the two terms.

$3x(y + 7) – 2(y + 7) = (y + 7)(3x – 2)$

Therefore, factorization of $3xy + 21x – 2y – 14$ is $(y + 7)(3x – 2)$ and the prime factors of $3xy + 21x – 2y – 14$ are $(y + 7)$ and $(3x – 2)$.

Ex 2: Factorize $a^3 – 2a^2 + 5a – 10$

$a^3 – 2a^2 + 5a – 10 = (a^3 – 2a^2) + (5a – 10)$

$(a^3 – 2a^2) + (5a – 10) = a^2(a – 2) + 5(a – 2) = (a – 2)(a^2 – 5)$

Therefore, factorization of $a^3 – 2a^2 + 5a – 10$ is $(a – 2)(a^2 – 5)$ and the prime factors are $(a – 2)$ and $(a^2 – 5)$.

Ex 3: Factorize $-b^2 + 12ac + 6ab – 2bc$

Notice that there is no common factor between the first two terms, i.e., $-b^2$ and $12ac$.

So rearrange the terms.

$-b^2 + 12ac + 6ab – 2bc = -b^2 + 6ab + 12ac – 2bc$

$-b^2 + 6ab + 12ac – 2bc = (-b^2 + 6ab) + (12ac – 2bc)$

$= -b(b – 6a) – 2c(-6a + b) = -b(b – 6a) – 2c(b – 6a)$

$=(b – 6a)(-b – 2c) = (b – 6a)(-(b + 2c)) = -(b – 6a)(b + 2c) = (6a – b)(b + 2c)$

Therefore, factorization of $-b^2 + 12ac + 6ab – 2bc$ is $(6a – b)(b + 2c)$ and the prime factors are $(6a – b)$ and $(b + 2c)$.

Ex 4: Factorize $amx^2 + bmxy – anxy – bny^2$

$amx^2 + bmxy – anxy – bny^2 = (amx^2 + bmxy) + (– anxy – bny^2)$

$= mx(ax + by) – ny(ax + by) = (ax + by)(mx – ny)$

### 3. Factoring by Splitting Terms

We can make pairs of terms only when a polynomial has an even number of terms. But when a polynomial has an odd number of terms, then we split any of the terms of the polynomial to get an even number of terms. This method of splitting a term for factoring is called factoring by splitting terms.

Once we get an even number of terms, we use the grouping method to group the terms and take out the common factor.

The method of factoring by splitting the terms is commonly used to factorize the trinomials, especially the quadratic polynomials, where it is referred to as splitting the middle-term method.

These are the different cases that can exist if a polynomial is a trinomial.

• Quadratic polynomials of the form $ax^2 + bx + c$
• Polynomials reducible to the form $ax^2 + bx + c$
• Polynomials that are not quadratic polynomials

#### 3. 1 Factoring of Quadratic Polynomials of the Form $ax^2 + bx + c$

The steps involved in factoring of quadratic polynomials of the form $ax^2 + bx + c$ are as follows

Step 1: Find two numbers $p$ and $q$ such that $b = p + q$ and $ac = pq$

Step 2: Replace $bx$ by $px + qx$, i.e, split $b$ into two numbers $p$ and $q$

Step 3: Make pairs of the adjacent terms

Step 4: Take a common factor from each of the pairs of terms

Step 5: Express polynomial as a product of prime factors

#### Examples

Ex 1: Factorize $x^{2} + 5x + 6$

Comparing $x^{2} + 5x + 6$ with $ax^{2} + bx + c$, we get $a = 1$, $b = 5$, and $c = 6$.

$b = 5 = 3 + 2$ and $ac = 1 \times 6 = 6 = 3 \times 2$

Therefore, $x^{2} + 5x + 6 = x^{2} + 3x + 2x + 6 = (x^{2} + 3x) + (2x + 6)$

$= x(x + 3) + 2(x + 3) = (x + 3)(x + 2)$

Therefore, factorization of $x^{2} + 5x + 6 = (x + 3)(x + 2)$ and its prime factors are $(x + 3)$ and $(x + 2)$.

Ex 2: Factorize $x^{2} + x – 12$

Comparing $x^{2} + x – 12$ with $ax^{2} + bx + c$, we get $a = 1$, $b = 1$, and $c = -12$.

$b = 1 = 4 – 3$ and $ac = 1 \times (-12) = -12 = 4 \times (-3)$

Therefore, $x^{2} + x – 12 = x^{2} + 4x – 3x – 12 = x(x + 4) – 3(x + 4)$

$=(x + 4)(x – 3)$

Therefore, factorization of $x^{2} + x – 12 = (x + 4)(x – 3)$ and its prime factors are $(x + 4)$ and $(x – 3)$.

Ex 3: Factorize $6x^2 + 17x + 12$

Comparing $6x^{2} + 17x + 12$ with $ax^{2} + bx + c$, we get $a = 6$, $b = 17$, and $c = 12$.

$b = 17 = 8 + 9$ and $ac = 6 \times 12 = 72 = 8 \times 9$

Therefore, $6x^{2} + 17x + 12 = 6x^{2} + 8x + 9x + 12$

$= 2x(3x + 4) + 3(3x + 4) = (3x + 4)(2x + 3)$

Therefore, $6x^2 + 17x + 12 = (3x + 4)(2x + 3)$

Ex 4: Factorize $x^2 + 3 \sqrt{3}x + 6$

Comparing $x^2 + 3 \sqrt{3}x + 6$ with $ax^{2} + bx + c$, we get $a = 1$, $b = 3 \sqrt{3}$, and $c = 6$.

$b = 3 \sqrt{3} = 2 \sqrt{3} + \sqrt{3}$ and $ac = 1 \times 3 \sqrt{3} = 3 \sqrt{3} = 2 \sqrt{3} + \sqrt{3}$.

Therefore, $x^2 + 3 \sqrt{3}x + 6 = x^2 + \sqrt{3}x + 2 \sqrt{3}x + 6$

$= x \left(x + \sqrt{3} \right) + 2 \sqrt{3} \left(x + \sqrt{3} \right)$

$= \left(x + \sqrt{3} \right) \left(x + 2 \sqrt{3} \right)$

Therefore, $x^2 + 3 \sqrt{3}x + 6 = \left(x + \sqrt{3} \right) \left(x + 2 \sqrt{3} \right)$.

#### 3. 2 Factoring of Polynomials Reducible to the Form $ax^2 + bx + c$

We often see polynomials that do not look in the form $ax^2 + bx + c$, but can be converted or reduced to the form $ax^2 + bx + c$.

Let’s take some examples of such polynomials.

#### Examples

Ex 1: Factorize $\left(a^2 – 3a \right)^2 – 5 \left(a^2 – 3a \right) + 4$

The given polynomial is $\left(a^2 – 3a \right)^2 – 5 \left(a^2 – 3a \right) + 4$

Observe that the expression $\left(a^2 – 3a \right)$ is repeated two times – one with power $2$ and the other with power $1$.

Let’s replace $\left(a^2 – 3a \right)$ with $u$.

So, we have $\left(a^2 – 3a \right)^2 – 5 \left(a^2 – 3a \right) + 4 = u^2 – 5u + 4$ which is in the form $ax^2 + bx + c$, where $a = 1$, $b = -5$ and $c = 4$.

$u^2 – 5u + 4 = u^2 – u – 4u + 4 = u(u – 1) – 4(u -1) = (u – 1)(u – 4)$

Now, replace $u$ with the original expression $\left(a^2 – 3a \right)$

$\left(a^2 – 3a – 1 \right) \left(a^2 – 3a – 4 \right)$

Therefore, factorization of $\left(a^2 – 3a \right)^2 – 5 \left(a^2 – 3a \right) + 4$ is $\left(a^2 – 3a – 1 \right) \left(a^2 – 3a – 4 \right)$.

Ex 2: Factorize $2x^{4} + 9x^2 + 14$

$x^{4} + 9x^2 + 14$ also is not in the form $ax^2 + bx + c$

Now, let’s replace $x^2$ with $u$

$x^{4} + 9x^2 + 14 = \left(x^2 \right)^2 + 9x^2 + 14 = u^2 + 9u + 14$

$= u^2 + 2u + 7u + 14 = \left(u^2 + 2u \right) + \left(7u + 14 \right)$

$u\left(u + 2 \right) + 7\left(u + 2 \right) = (u + 2)(u + 7)$

$= \left(x^2 + 2 \right) \left(x^2 + 7 \right)$

Therefore, $2x^{4} + 9x^2 + 14 = \left(x^2 + 2 \right) \left(x^2 + 7 \right)$.

#### 3.3 Factoring of Trinomials Which are Not Quadratic Polynomials

Let’s consider some examples to understand the factorization of these types of polynomials.

#### Examples

Ex 1: If $x^2 + px + q = (x + a) (x + b)$, then factorize $x^2 + pxy + qy^2$.

We have $x^2 + px + q = (x + a) (x + b)$

$=> x^2 + px + q = x^2 + x(a + b) + ab$

On equating the coefficients of like powers of $x$, we get

$p = a + b$ and $q = ab$

Therefore,  $x^2 + pxy + qy^2 = x^2 + (a + b)xy + aby^2$

$= \left(x^2 + axy \right) + \left(bxy + aby^2 \right)$

$= x(x + ay) + by(x + ay)$

$= (x + ay) (x + by)$

Ex 2: Factorize the following expression $x^2y^2 – xy – 72$

In order to factorize $x^2y^2 – xy – 72$, we have to find two numbers $p$ and $q$ such that $p + q = -1$ and $pq = -72$

These numbers are $-9$ and $8$.

$-9 + 8 = -1$ and $-9 \times 8 = -72$.

So, we write the middle term $-xy$ of $x^2y^2 – xy – 72$ as $-9xy + 8xy$, so that we have

$x^2y^2 – xy – 72 = x^2y^2 – 9xy + 8xy – 72$

$= \left(x^2y^2 – 9xy \right) + \left(8xy – 72 \right)$

$= xy (xy – 9) + 8 (xy – 9)$

$= (xy – 9) (xy + 8)$

Therefore, factorization of $x^2y^2 – xy – 72$ is $= (xy – 9) (xy + 8)$.

### 4. Factoring Using Algebraic Identities

The process of factoring polynomials can be easily performed using algebraic identities. When the given polynomial represents any algebraic identities, we can use that identity to factorize the polynomial. The identities that are used in factoring polynomials are

• $a^2 + 2ab + b^2 = (a + b)^2$
• $a^2 – 2ab + b^2 = (a – b)^2$
• $a^2 – b^2 = (a + b)(a – b)$
• $a^3 – b^3 = \left(a – b \right) \left(a^2 + ab + b^2 \right)$
• $a^3 + b^3 = \left(a + b \right) \left(a^2 – ab + b^2 \right)$

### Examples

Ex 1: Factorize $4x^2 + 12x + 9$

$4x^2 + 12x + 9 = \left(2x \right)^2 + 2 \times 2x \times 3 + 3^2$, which is of the form $a^2 + 2ab + b^2$, where $a = 2x$ and $b = 3$.

Therefore, $4x^2 + 12x + 9$ is written as $(2x + 3)^{2} = (2x + 3)(2x + 3)$

Thus, factorization of $4x^2 + 12x + 9$ is $(2x + 3)(2x + 3)$

Ex 2: Factorize $25y^2 – 20xy + 4x^2$

$25y^2 – 20xy + 4x^2 = \left(5y \right)^2 – 2 \times 5y \times 2x + \left(2x \right)^2$, which is of the form $a^2 – 2ab + b^2$, where $a = 5y$ and $b = 2x$.

Therefore, $25y^2 – 20xy + 4x^2 = (5y – 2x)^2 = (5y – 2x)(5y – 2x)$.

Thus, factorization of $25y^2 – 20xy + 4x^2$ is $(5y – 2x)(5y – 2x)$.

Ex 3: Factorize $4x^2 – 9y^2$

$4x^2 – 9y^2 = \left(2x \right)^2 – \left(3y \right)^2$, which is of the form $a^2 – b^2$, where $a = 2x$ and $b = 3y$.

Therefore, $4x^2 – 9y^2 = (2x – 3y)(2x + 3y)$

Ex 4: Factorize $\frac{a^4}{9} – \frac{b^4}{16}$

$\frac{a^4}{9} – \frac{b^4}{16} = \left(\frac{a^2}{3} \right)^2 – \left(\frac{b^2}{4} \right)^2$

$\left(\frac{a^2}{3} \right)^2 – \left(\frac{b^2}{4} \right)^2$ is of the form $x^2 – y^2$, which can be written as $(x – y)(x + y)$, where $x = \frac{a^2}{3}$ and $y = \frac{b^2}{4}$

Therefore, $\left(\frac{a^2}{3} \right)^2 – \left(\frac{b^2}{4} \right)^2 = \left(\frac{a^2}{3} – \frac{b^2}{4} \right) \left(\frac{a^2}{3} + \frac{b^2}{4} \right)$

$\frac{a^2}{3} – \frac{b^2}{4}$ can again be written as $\left(\frac{a}{\sqrt{3}} \right)^2 – \left(\frac{b}{2} \right)^2 = \left(\frac{a}{\sqrt{3}} – \frac{b}{2} \right) \left(\frac{a}{\sqrt{3}} + \frac{b}{2}\right)$

Therefore, $\frac{a^4}{9} – \frac{b^4}{16} = \left(\frac{a}{\sqrt{3}} – \frac{b}{2} \right) \left(\frac{a}{\sqrt{3}} + \frac{b}{2}\right) \left(\frac{a^2}{3} + \frac{b^2}{4} \right)$

Ex 5: Factorize $8x^3 – 27$

$8x^3 – 27 = (2x)^3 – 3^3$ which is of the form $a^3 – b^3$, where $a = 2x$ and $b = 3$

Therefore, $8x^3 – 27 = (2x)^3 – 3^3 = \left(2x – 3 \right) \left(\left(2x \right)^2 + 2x \times 3b + 3^2 \right) = \left(2x – 3 \right) \left(4x^2 + 6bx + 9 \right)$

## Practice Problems

Factorize the following polynomials

• $54x^2 + 42x^3 – 30x^4$
• $2x^2yz + 2xy^2z + 4xyz$
• $30xy – 12x + 10y – 4$
• $z – 19 + 19xy – xyz$
• $100x^2 – 80xy + 16y^2$
• $16x^4 – y^4$
• $x^2 + 6x + 8$
• $49y^2 – 1$

## FAQs

### What is factoring polynomials?

Factoring polynomials means decomposing the given polynomial into a product of two or more polynomials. For example, $bx + ay + xy + ab$ can be written as $(x + a)(y + b)$ which is its factored form, and $(x + a)$ and $(y + b)$ are called the prime factors of $bx + ay + xy + ab$.

### What is the meaning of factoring polynomials by grouping?

Factoring polynomials by grouping means factoring the polynomial by the method of grouping that allows us to rearrange the terms of the expression, to easily identify and find factors of the polynomial expression.

### What are the four methods of factoring polynomials?

The four methods of factoring polynomials are
a) Method of Common Factors
b) Grouping Method
c) Factoring by splitting terms
d) Factoring Using Algebraic Identities

### How is the factor theorem useful in factoring polynomials?

The factor theorem is used to find the factors of an $n$-degree polynomial without actual division. If a value $x = a$ satisfies an $n$-degree polynomial $f(x)$, and $f(a) = 0$, then $(x – a)$ is a factor of the polynomial expression. Further, we can find a few factors using the factor theorem and the remaining can be found using the factorization of a quadratic equation.

## Conclusion

A factor is an entity(a number, a polynomial, a function, a matrix, etc) that divides another entity, leaving no remainder. Factorization or factoring is defined as the breaking or decomposition of an entity. The four most commonly used methods of factoring polynomials are a method of common factors, grouping method, factoring by splitting terms, and factoring using algebraic identities.