• Home
• /
• Blog
• /
• Division of Algebraic Expressions(With Methods & Examples)

# Division of Algebraic Expressions(With Methods & Examples)

October 30, 2022 This post is also available in: हिन्दी (Hindi)

In mathematics, addition, subtraction, multiplication, and division are four basic operations. Just like we divide numbers we can perform the division of algebraic expressions.  In the case of addition and subtraction, we can add or subtract only the like terms. But in the case of the division of algebraic expressions, participating terms don’t need to be the like terms. We can divide two or more like terms as well as unlike terms.

Let’s understand the methods of dividing algebraic expressions with steps and examples.

## What is the Division of Algebraic Expressions?

The division of algebraic expressions is a method of dividing two given expressions consisting of variables and constants. The general procedure involved in the division of algebraic expressions is to

• divide the coefficients of the terms
• subtract the powers of the variables with the same base
• obtain the algebraic sum of the like and unlike terms

For example, $32x^{6} \div 4x^{2} = \left(32 \div 4 \right) \left(x^{6} \div x^{2} \right) = 8x^{6 – 2} = 8x^4$

While dividing the coefficients, the general rules of division of integers are followed.

• $\text{Positive} \div \text{Positive} = \text{Positive}$, i.e., $+ \div + = +$
• $\text{Positive} \div \text{Negative} = \text{Negative}$, i.e., $+ \div – = -$
• $\text{Negative} \div \text{Positive} = \text{Negative}$, i.e., $- \div + = -$
• $\text{Negative} \div \text{Negative} = \text{Positive}$, i.e., $- \div – = +$

And, while dividing variables, the division rule of exponents is followed

• $a^{m} \div a^{n} = a^{m – n}$
Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

## How to Divide Algebraic Expressions?

Algebraic expressions are broadly classified into two types – monomials and polynomials. Depending on the type of algebraic expressions these are the three different types of division of algebraic expressions.

• Dividing a monomial by a monomial
• Dividing a polynomial by a monomial
• Dividing a polynomial by a polynomial

## Dividing a Monomial by a Monomial

An algebraic expression is considered a monomial when it contains only one term, such as $2x^{3}$, $b^{4}$, etc. While dividing a monomial by another monomial, the quotient of the coefficient of the two monomials is calculated and the variables are divided separately.

Let’s consider a few examples to understand the procedure of dividing a monomial by a monomial.

### Examples

Ex 1: $15m^{5} \div 3m^{2}$

$15m^{5} \div 3m^{2} = \frac{15m^{5}}{3m^{2}} = \frac{15}{3} \times \frac{m^{5}}{m^{2}} = 5m^{5 – 2} = 5m^{3}$

Ex 2: $12x^{3}y^{5} \div 5xy^{2}$

$12x^{3}y^{5} \div 5xy^{2} = \frac{12}{5} \times \frac{x^{3}y^{5}}{xy^{2}} = \frac{12}{5} \times \frac{x^{3}y^{5}}{xy^{2}} = \frac{12}{5}x^{3 – 1}y^{5 – 2} = \frac{12}{5}x^{2}y^{3}$

Ex 3: $8bx^{2}y \div 2axy^{2}$

$8bx^{2}y \div 2axy^{2} = \frac {8}{2} \times \frac{bx^{2}y}{axy^{2}} = 4 \frac{bx}{ay}$

## Dividing a Polynomial by a Monomial

There are many types of polynomials depending on the number of terms they contain such as

• binomial having two terms
• trinomial having three terms
• polynomial having more than three terms

To simplify these types of expressions, we look for common factors. A common factor is found when we have the same number or variable or a combination of number and variable in the numerator and denominator.

### Examples

Now, let’s perform the division of polynomials by monomials.

Ex 1: $\left(4y^{3} – 6y^{2} + 7y \right) \div 2y$

Here, the trinomial is $4y^{3} – 6y^{2} + 7y$, and the monomial is $2y$.

In trinomial, on taking the common factor $2y$, it becomes:

$4y^{3} – 6y^{2} + 7y = 2y \left(2y^{2} – 3y + \frac{7}{2} \right)$

Now, we do the division operation: $2y \left(2y^{2} – 3y + \frac{7}{2} \right) \div 2y = \frac{2y \left(2y^{2} – 3y + \frac{7}{2} \right)}{2y}$.

Cancel $2y$ from the numerator and the denominator, so we get $2y^{2} – 3y + \frac{7}{2}$

Thus, $\left(4y^{3} – 6y^{2} + 7y \right) \div 2y = 2y^{2} – 3y + \frac{7}{2}$.

Ex 2: $\left(2ay^{4} + 6by^{2} + 4aby \right) \div 2ab$

Here, the trinomial is $2ay^{4} + 6by^{2} + 4aby$, and the monomial is $2ab$.

In trinomial, on taking the common factor $2y$, it becomes:

$2ay^{4} + 6by^{2} + 4aby = 2y\left(ay^{3} + 3by + 2ab \right)$

Now, we do the division operation: $\left(2ay^{4} + 6by^{2} + 4aby \right) \div 2ab = \frac {2y\left(ay^{3} + 3by + 2ab \right)}{2y}$.

Cancel $2y$ from the numerator and the denominator, so we get $ay^{3} + 3by + 2ab$

Thus, $\left(2ay^{4} + 6by^{2} + 4aby \right) \div 2ab = ay^{3} + 3by + 2ab$.

## Dividing a Polynomial by a Polynomial

While dividing a polynomial by a polynomial, common factors from both polynomials are taken and then the common factor is canceled out to get the quotient.

The steps to find the quotient when a polynomial is divided by another polynomial are

Step 1: Take the common factor from both the polynomials.

Step 2: Cancel out the common factor.

Step 3: The quotient is the remaining polynomial.

### Examples

Let us consider polynomials that divide polynomial for performing the division operation.

Ex 1: $\left(3x^{2} + 6x \right) \div (x + 2)$

Here, both the polynomials are binomials.

Taking out the common factor from $3x^{2} + 6x$.

$3x^{2} + 6x = 3x \left(x + 2 \right)$.

Therefore, $\left(3x^{2} + 6x \right) \div \left(x + 2 \right) = \frac{3x^{2} + 6x}{x + 2} = \frac{3x \left(x + 2 \right)}{x + 2} = 3x$.

Ex 2: $\left(6x^{2} + 8x + 2 \right) \div \left(2x + 2 \right)$

Here, one polynomial is a trinomial and the other is a binomial.

Take out the common factors.

For the polynomial $6x^{2} + 8x + 2$, $2x + 2$ is the common factor.

So, we get $6x^{2} + 8x + 2 = \left(2x +2 \right) \left(3x + 1 \right)$

Now, consider $2x + 2$ as a common factor among them.

Therefore, $\left(6x^{2} + 8x + 2 \right) \div \left(2x + 2 \right) = \frac{\left(2x +2 \right) \left(3x + 1 \right)}{2x + 2}$.

Eliminate $2x + 2$ from the numerator and denominator, we get the solution for the long dividing polynomials as:

$\left(6x^{2} + 8x + 2 \right) \div \left(2x + 2 \right) = 3x + 1$.

## Tips for Division of Algebraic Expressions

• We can divide any algebraic term with any other algebraic term. It can be the division of two like terms or a division of like and unlike terms.
• We can ignore the order of variables in like terms in an algebraic expression. For example,  $3a + 2b$, and, $9b + a$ both are like terms.
• We can ignore writing $1$ as the numerical coefficient of any term. For example, $xy$ is the same as $1xy$.
• We can replace a missing term with $0$ with the same variables. For example, a missing term can be written as $0x$, $0y$, or $0xy$ depending on the variables of the missing term.

## Practice Problems

Divide the following

• $9x^{2}$ by $3x$
• $7x^{5}$ by $2x^{2}$
• $12a^{2}b^{3}$ by $2ab$
• $15m^{2} + 5m$ by $5m + 1$
• $26a^{2} + 12a$ by $13a + 6$
• $15x^{2} + 11x + 2$ by $6x^{2} + 11x + 3$

## FAQs

### What is a division expression?

Division expressions are mathematical expressions using division. To simplify these types of expressions, we look for a common factor. A common factor is found when we have the same number or variable or a combination of number and variable in the numerator and denominator.

### What are the steps in the division of algebraic expressions?

The steps to divide algebraic expressions are:
a) Directly take out common terms or factorize the given expressions to check for the common terms.
b) Cancel the common term.

## Conclusion

The division of algebraic expressions is a method of dividing two given expressions consisting of variables and constants. The general procedure involved in the division of algebraic expressions is to look for a common factor, which is then canceled out to get the quotient.