# Decimal Fraction – Definition, Conversion & Operations (With Examples)

The decimal numbers can be written in a fractional notation. A fraction or a mixed number whose denominator is a power of 10 is known as a decimal fraction. Some of the examples of decimal fractions are $\frac {2}{10} = 0.2, \frac {7}{10} = 0.7, \frac {67}{100} = 0.67, \frac {534}{1000} = 0.534$ etc.

Let’s find out more about decimal fractions, the method of converting decimal to fraction, and vice-versa and their arithmetic operations.

## What is Decimal Fraction?

As you know that a fraction is a relation between a part(numerator) and a whole(denominator). In the case of a decimal fraction, a part can be any whole number such as $7$, $24$, or $439$, but the whole is always a power of $10$.

Note: The numbers $10$, $100$, $1000$, $10000$, etc. are called the power of $10$s, as all these numbers can be represented in the powers of $10$. $\left( 10 = 10^{1}, 100 = 10^{2}, 1000 = 10^{3}, 10000 = 10^{4}, … \right)$

For example, $\frac {7}{10}$ means $7$ parts out of a total of $10$ parts. Similarly, $\frac {24}{100}$ means $24$ parts out of a total of $100$ parts. And in the same way, $\frac {439}{1000}$ refers to $439$ parts out of $1000$ parts. Decimal fraction $\frac {7}{10}$

In the same way, a decimal fraction $1.6$ can be written as $1\frac {6}{10}$, which means $1$ whole parts and $6$ parts out of $10$ parts, where $1$ whole is made up of $10$ parts. Decimal fraction $1 \frac {6}{10}$

Note: The fractions $\frac {3}{7}$, $\frac {1}{9}$, $\frac {21}{75}$, $\frac {129}{389}$ are not decimal fractions, since in all these fractions denominators are not powers of $10$.

## Conversion of Decimal Fractions

As seen above the decimal fractions are another way of representing a decimal as a fraction with a denominator as a power of $10$.

Now, let’s see how you can convert a decimal to a fraction and vice versa.

### Conversion of Decimal to Fraction

The following steps are used to convert a decimal to a decimal fraction.

Step 1: Write the decimal fraction as a numerator but without a decimal point. E.g., for $0.7$ the numerator will be $7$, and similarly, for $0.834$ the numerator will be $834$.

Step 2: Count the number of digits in decimal places and write the denominator as a power of $10$, with the number of decimal places as power. For example, in the case of $0.7$, the number of digits after the decimal point is $1$, therefore denominator will be $10^{1} = 10$. And similarly, in the case of $0.834$, the number of digits after the decimal point is $3$, therefore denominator will be $10^{3} = 1000$.

Step 3: Reduce the fraction, if required.

#### Examples

Ex 1: Convert $0.6$ to a fraction.

The numerator will be $6$ (Decimal number without decimal point).

Number of digits after decimal places = $1$.

Therefore, denominator will be $10^{1} = 10$.

And fraction $= \frac {6}{10}$.

Reduce it to the lowest/simplest form.  $\frac {6}{10} = \frac {3}{5}$.

Note: $\frac {6}{10}$ and $\frac {3}{5}$ are equivalent fractions.

Ex 2: Convert $0.953$ to fraction.

The numerator is $953$ (Decimal number without decimal point).

Number of digits after decimal places = $3$.

Therefore, denominator is $10^{3} = 1000$.

And fraction $= \frac {953}{1000}$.

Ex 3: Convert $2.26$ to fraction.

The numerator is $226$ (Decimal number without decimal point).

Number of digits after decimal places = $2$.

Therefore, denominator is $10^{2} = 100$.

And fraction $= \frac {226}{100}$.

Note: It’s an improper fraction and hence can be converted to a mixed fraction.

$\frac {226}{100} = 2 \frac {26}{100}$

Convert it to lowest form ${26}{100} = {13}{50}$.

Therefore, $2.26 = 2 \frac {13}{50}$.

Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

### Conversion of Fraction to Decimal

The steps used to convert a decimal fraction to a decimal number are.

Step 1: Note down the numerator of a fraction

Step 2: Count the number of zeroes in the denominator

Step 3: Put a decimal point after a number of places equal to the number of zeroes.

#### Examples

Ex 1: Convert $\frac {2|{10}$ into decimal

Numerator is $2$.

The number of $0$s in the denominator is $1$.

So, the decimal number is $0.2$.

Ex 2: Convert $\frac {543|{1000}$ into decimal

Numerator is $543$.

The number of $0$s in the denominator is $3$.

So, the decimal number is $0.543$.

## Operations With Decimal Fractions

Like other types of numbers, with decimal fractions also, you can perform any of the four arithmetic operations – addition, subtraction, multiplication, and division.

There are two ways of performing the arithmetic operations on decimal fractions

• using fraction operations
• by converting them to decimals

## Operations With Decimal Fractions Using Fractions

Since decimal fractions are a type of fractions, you can use the process of addition & subtraction or multiplication & division of fractions.

### Addition of Decimal Fractions Using Fractions

Let’s consider a few examples to add decimal fractions.

Ex 1: Add $0.3$ and $0.4$.

$0.3 = \frac {3}{10}$ and $0.4 = \frac {4}{10}$.

Here $\frac {3}{10}$ and $\frac {4}{10}$ are like fractions as the denominators are same. So, to add these two fractions, just add the numerators and the denominator will remain the same.

$\frac {3}{10} + \frac {4}{10} = \frac {3 + 4}{10} = \frac {7}{10} = 0.7$

Ex 2: Add $0.5$ and $0.23$.

$0.5 = \frac {5}{10}$ and $0.23 = \frac {23}{100}$

In this case the fractions $\frac {5}{10}$ and $\frac {23}{100}$ are unlike fractions as the denominators are different. So, the first step will be to take the LCM of denominators i.e., $10$ and $100$, and then convert numerators accordingly.

$\frac {5}{10} = \frac {5\times 10}{10 \times 10} = \frac {50}{100}$

Therefore, $\frac {5}{10} + \frac {23}{100} = \frac {50}{100} + \frac {23}{100}$

= $\frac {50 + 23}{100} = \frac {73}{100} = 0.73$.

### Subtraction of Decimal Fractions Using Fractions

Let’s consider a few examples to subtract decimal fractions.

Ex 1: Subtract $0.2$ from $0.8$.

$0.2 = \frac {2}{10}$ and $0.8 = \frac {8}{10}$.

Here $\frac {2}{10}$ and $\frac {8}{10}$ are like fractions as the denominators are same. So, to subtract these two fractions, just subtract the numerators and the denominator will remain the same.

$\frac {8}{10} – \frac {2}{10} = \frac {8 – 2}{10} = \frac {6}{10} = 0.6$

Ex 2: Subtract $0.4$ from $0.59$.

$0.4 = \frac {4}{10}$ and $0.59 = \frac {59}{100}$

In this case the fractions $\frac {4}{10}$ and $\frac {59}{100}$ are unlike fractions as the denominators are different. So, the first step will be to take the LCM of denominators i.e., $10$ and $100$, and then convert numerators accordingly.

$\frac {4}{10} = \frac {4\times 10}{10 \times 10} = \frac {40}{100}$

Therefore, $\frac {59}{100} – \frac {4}{10} = \frac {59}{100} – \frac {40}{100}$

= $\frac {59 – 40}{100} = \frac {19}{100} = 0.19$

### Multiplication of Decimal Fractions Using Fractions

For multiplication also, we’ll use the process of multiplication of fractions. Let’s consider a few examples to multiply decimal fractions.

Ex 1: Multiply $0.8$ and $0.6$

$0.8 = \frac {8}{10}$ and $0.6 = \frac {6}{10}$

Therefore, $0.8 \times 0.6 = \frac {8}{10} \times \frac {6}{10}$

$=\frac {8 \times 6}{10 \times 10} = \frac {48}{100} = 0.48$

Ex 2: Multiply $0.2$ and $0.67$

$0.2 = \frac {2}{10}$ and $0.67 = \frac {67}{100}$

Therefore, $0.2 \times 0.67 = \frac {2}{10} \times \frac {67}{100}$

$= \frac {2 \times 67}{10 \times 100} = \frac {134}{1000} = 0.134$

Note: You can directly multiply two or more, unlike fractions without converting them to like fractions.

### Division of Decimal Fractions Using Fractions

You know that division is nothing but multiplying the reciprocal of the second fraction with the first fraction, hence the process of division is the same as that of multiplication with one additional step!

Ex 1: Divide $0.7$ by $0.5$

$0.7 = \frac {7}{10}$ and $0.5 = \frac {5}{10}$

Therefore, $0.7 \div 0.5 = \frac {7}{10} \div \frac {5}{10} = \frac {7}{10} \times \frac {10}{5}$$= \frac {7 \times 10}{10 \times 5} = \frac {70}{50} = \frac {7}{5} = 1\frac {2}{5}$ (Converted to mixed fraction).

## Real-Life Application of Decimal Fractions

Decimal fractions are used for understanding precise quantities instead of whole numbers. You will also use them for expressing percentages. For instance, 97% can be written as 97/100 for ease of calculation.

Here are some of the situations where you might encounter decimal fractions:

• Coins (They are a fraction of Rupees)
• Weighing products
• Measuring ingredients while cooking

## Conclusion

Decimal fractions are fractions with denominators as a power of $10$. These fractions help us to express precise quantities and help us understand weights like $2.8$ kg and distances like $2.54$ km.

## Practice Problems

1. Which of the following are decimal fractions?
• $\frac {5}{10}$
• $\frac {15}{2}$
• $\frac {17}{100}$
• $\frac {25}{1000}$
• $\frac {7}{93}$
2. Convert the following decimals to fractions
• $0.005$
• $0.234$
• $1.56$
• $0.208$
• $3.2335$
3. Convert the following fractions to decimals
• $\frac {3}{10}$
• $\frac {56}{10}$
• $\frac {78}{100}$
• $\frac {432}{1000}$
• $\frac {203}{10000}$
4. Perform the following operations
• $0.8 + 0.1$
• $1.2 + 0.5$
• $0.6 + 0.3$
• $0.7 – 0.2$
• $0.9 – 0.6$
• $1.5 – 0.2$
• $0.2 \times 0.1$
• $0.3 \times 0.28$
• $0.74 \times 0.22$
• $0.7 \div 0.2$
• $0.4 \div 0.9$
• $0.685 \div 0.28$