# Decimal Place Value Chart (Definition & Examples)

Each digit in a whole number has a place value. It is the value held by a digit because of its position in a number. For example in a whole number $527$, the $7$ is in the one’s place, the $2$ is in the tens place, and the $5$ is in the hundreds place.

Similarly, every digit in a decimal number has a place value associated with it by virtue of its position in the number. The only difference in the case of decimal numbers is that whole numbers expand to the left, whereas decimal place numbers expand to the right.

A decimal place value chart is an effective tool for locating the place value of a digit in a decimal number.

## What is Decimal Place Value?

A decimal number is made up of two parts – a whole number and a fractional part. These two parts are separated by a dot called the decimal point ($.$). For example, in decimal number $8.39$, $8$ is the whole part, and $.39$ is the decimal/fractional part.

A place value is a value represented by a digit in a number on the basis of its position in the number.

### Whole Number Part

The place value of a digit in a whole number part is its value based on its position relative to the decimal point moving towards the left. The place values of a digit relative to the decimal point can be

• Ones – first digit from the decimal point
• Tens – second digit from the decimal point
• Hundreds – third digit from the decimal point
• Thousands – fourth digit from the decimal point
• Ten thousands – fifth digit from the decimal point

And it goes further towards the left.

### Examples

Ex 1: $92386$

The place values of digits in $92386$ can be represented as

Ex 2: $524$

The place values of digits in $524$ can be represented as

### Fractional Number Part

In the same way, the place value of a fractional number part is its value based on its position relative to the decimal point moving towards the right. The place values of a digit relative to the decimal point can be

• Tenths – first digit from the decimal point
• Hundredths – second digit from the decimal point
• Thousandths – third digit from the decimal point
• Ten thousandths – second digit from the decimal point

And it moves further towards the right.

Is your child struggling with Maths?
We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

### Examples

Ex 1: $.5802$

The place values of digits in $.5802$ can be represented as

Ex 2: $.0509$

The place values of digits in $.0509$ can be represented as

## Decimal Place Value Chart

As a decimal number consists of two parts – the whole number part and the decimal/fractional part, the above chart is combined to get the decimal place value chart.

If you observe the decimal place value chart, it can be seen that the place values before the decimal start with ones, followed by tens, hundreds, and so on, while the place values after the decimal point start from tenths, followed by hundredths, then thousandths and so on.

The place value after the decimal represents the fractional part of the number. For example, the number $259.74$ is made up of $2$ hundreds $5$ tens, and $9$ ones in the whole number part, and $7$ tenths and $4$ hundredths in the fractional part. This means $259.74 = 2 \times 100 + 5 \times 10 + 9 \times 1 + 7 \times \frac{1}{10} + 4 \times \frac {1}{100}$. It can also be written as $259.74 = 2 \times 10^{2} + 5 \times 10^{1} + 9 \times 10^{0} + 7 \times \frac{1}{10^{-1}} + 4 \times \frac {1}{10^{-2}}$.

### Examples

Ex 1: Write the place values of the digits in the decimal number $1834.503$.

$1834.503 = 1 \times 1000 + 8 \times 100 + 3 \times 10 + 4 \times 1 + 5 \times \frac {1}{10} + 0 \times \frac {1}{100} + 3 \times \frac {1}{1000}$ $= 1 \times 10^{3} + 8 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0} + 5 \times \frac {1}{10^{1}} + 0 \times \frac {1}{10^{2}} + 3 \times \frac {1}{10^{3}}$.

Ex 2: Write the place values of the digits in the decimal number $43.008$.

$43.008 = 4 \times 10 + 3 \times 1 + 0 \times \frac {1}{10} + 0 \times \frac {1}{100} + 8 \times \frac {1}{1000} =$ $4 \times 10^{1} + 3 \times 10^{0} + 0 \times \frac {1}{10^{1}} + 0 \times \frac {1}{10^{2}} + 8 \times \frac {1}{100^{3}}$.

Ex 3: Write a number with $7$ hundreds, $3$ tens, $9$ ones, and $1$ tenths, $6$ hundredths.

$7$ hundreds = $7 \times 100$

$3$ tens = $3 \times 10$

$9$ ones = $9 \times 1$

$1$ tenths = $1 \times \frac {1}{10}$

$6$ tenths = $6 \times \frac {1}{100}$

And it is equal to $700 + 30 + 9 + 0.1 + 0.06 = 739.16$

Ex 4: Find the place values of $5$ and $3$ in the decimal number $4598.237$.

Writing the number $4598.237$ in decimal place value chart, we observe that

The place value of $5$ is $5 \times 100 = 500$ and that of $3$ is $3 \times \frac {1}{100} = 3 \times 0.01 = 0.03$.

## Conclusion

The decimal place value chart displays the place value of a digit in a decimal number. The place value of a digit in a decimal number is due to its relative position in a number. While finding the place value of a digit in a decimal number, we move from right to left for a whole number part and from left to right for a fraction number part starting from a decimal point.

## Practice Problems

1. Write the place values of the digits in the following decimal numbers
• $675.78$
• $1298.056$
• $9.5$
• $90.005$
• $74.903$
2. Find the place value of an indicated digit in the given decimal number
• Number $765.34$, digit $6$
• Number $59.612$, digits $5$ and $2$
• Number $321.905$, digits $3$ and $0$
• Number $1098.562$, digits $1$, $2$ and $0$
• Number $6.009$, digits $2$ $0$s