• Home
  • /
  • Blog
  • /
  • Decimal and Binary Numbers

Decimal and Binary Numbers

Decimal-and-Binary-Numbers

This post is also available in: हिन्दी (Hindi) العربية (Arabic)

Computers use binary – the digits 0 and 1 – to store data. It becomes necessary to understand the binary number system and how to convert a number to binary and vice-versa. A binary digit, or bit, is the smallest unit of data in computing. It is represented by a 0 or a 1. Binary numbers are made up of binary digits (bits), eg the binary number 1001.

The circuits in a computer’s processor are made up of billions of transistors. A transistor is a tiny switch that is activated by the electronic signals it receives. The digits 1 and 0 used in binary reflect the on and off states of a transistor.

Computer programs are sets of instructions. Each instruction is translated into machine code – simple binary codes that activate the CPU. Programmers write computer code and this is converted by a translator into binary instructions that the processor can execute.

coding-for-kids-ebook-cover

Get Instant Access To 

Coding For Kids eBook

A must read for every parent

Country
  • Afghanistan 93
  • Albania 355
  • Algeria 213
  • American Samoa 1-684
  • Andorra 376
  • Angola 244
  • Anguilla 1-264
  • Antarctica 672
  • Antigua & Barbuda 1-268
  • Argentina 54
  • Armenia 374
  • Aruba 297
  • Australia 61
  • Austria 43
  • Azerbaijan 994
  • Bahamas 1-242
  • Bahrain 973
  • Bangladesh 880
  • Barbados 1-246
  • Belarus 375
  • Belgium 32
  • Belize 501
  • Benin 229
  • Bermuda 1-441
  • Bhutan 975
  • Bolivia 591
  • Bosnia 387
  • Botswana 267
  • Bouvet Island 47
  • Brazil 55
  • British Indian Ocean Territory 246
  • British Virgin Islands 1-284
  • Brunei 673
  • Bulgaria 359
  • Burkina Faso 226
  • Burundi 257
  • Cambodia 855
  • Cameroon 237
  • Canada 1
  • Cape Verde 238
  • Caribbean Netherlands 599
  • Cayman Islands 1-345
  • Central African Republic 236
  • Chad 235
  • Chile 56
  • China 86
  • Christmas Island 61
  • Cocos (Keeling) Islands 61
  • Colombia 57
  • Comoros 269
  • Congo - Brazzaville 242
  • Congo - Kinshasa 243
  • Cook Islands 682
  • Costa Rica 506
  • Croatia 385
  • Cuba 53
  • Cyprus 357
  • Czech Republic 420
  • Denmark 45
  • Djibouti 253
  • Dominica 1-767
  • Ecuador 593
  • Egypt 20
  • El Salvador 503
  • Equatorial Guinea 240
  • Eritrea 291
  • Estonia 372
  • Ethiopia 251
  • Falkland Islands 500
  • Faroe Islands 298
  • Fiji 679
  • Finland 358
  • France 33
  • French Guiana 594
  • French Polynesia 689
  • French Southern Territories 262
  • Gabon 241
  • Gambia 220
  • Georgia 995
  • Germany 49
  • Ghana 233
  • Gibraltar 350
  • Greece 30
  • Greenland 299
  • Grenada 1-473
  • Guadeloupe 590
  • Guam 1-671
  • Guatemala 502
  • Guernsey 44
  • Guinea 224
  • Guinea-Bissau 245
  • Guyana 592
  • Haiti 509
  • Heard & McDonald Islands 672
  • Honduras 504
  • Hong Kong 852
  • Hungary 36
  • Iceland 354
  • India 91
  • Indonesia 62
  • Iran 98
  • Iraq 964
  • Ireland 353
  • Isle of Man 44
  • Israel 972
  • Italy 39
  • Jamaica 1-876
  • Japan 81
  • Jersey 44
  • Jordan 962
  • Kazakhstan 7
  • Kenya 254
  • Kiribati 686
  • Kuwait 965
  • Kyrgyzstan 996
  • Laos 856
  • Latvia 371
  • Lebanon 961
  • Lesotho 266
  • Liberia 231
  • Libya 218
  • Liechtenstein 423
  • Lithuania 370
  • Luxembourg 352
  • Macau 853
  • Macedonia 389
  • Madagascar 261
  • Malawi 265
  • Malaysia 60
  • Maldives 960
  • Mali 223
  • Malta 356
  • Marshall Islands 692
  • Martinique 596
  • Mauritania 222
  • Mauritius 230
  • Mayotte 262
  • Mexico 52
  • Micronesia 691
  • Moldova 373
  • Monaco 377
  • Mongolia 976
  • Montenegro 382
  • Montserrat 1-664
  • Morocco 212
  • Mozambique 258
  • Myanmar 95
  • Namibia 264
  • Nauru 674
  • Nepal 977
  • Netherlands 31
  • New Caledonia 687
  • New Zealand 64
  • Nicaragua 505
  • Niger 227
  • Nigeria 234
  • Niue 683
  • Norfolk Island 672
  • North Korea 850
  • Northern Mariana Islands 1-670
  • Norway 47
  • Oman 968
  • Pakistan 92
  • Palau 680
  • Palestine 970
  • Panama 507
  • Papua New Guinea 675
  • Paraguay 595
  • Peru 51
  • Philippines 63
  • Pitcairn Islands 870
  • Poland 48
  • Portugal 351
  • Puerto Rico 1
  • Qatar 974
  • Romania 40
  • Russia 7
  • Rwanda 250
  • Réunion 262
  • Samoa 685
  • San Marino 378
  • Saudi Arabia 966
  • Senegal 221
  • Serbia 381 p
  • Seychelles 248
  • Sierra Leone 232
  • Singapore 65
  • Slovakia 421
  • Slovenia 386
  • Solomon Islands 677
  • Somalia 252
  • South Africa 27
  • South Georgia & South Sandwich Islands 500
  • South Korea 82
  • South Sudan 211
  • Spain 34
  • Sri Lanka 94
  • Sudan 249
  • Suriname 597
  • Svalbard & Jan Mayen 47
  • Swaziland 268
  • Sweden 46
  • Switzerland 41
  • Syria 963
  • Sao Tome and Principe 239
  • Taiwan 886
  • Tajikistan 992
  • Tanzania 255
  • Thailand 66
  • Timor-Leste 670
  • Togo 228
  • Tokelau 690
  • Tonga 676
  • Trinidad & Tobago 1-868
  • Tunisia 216
  • Turkey 90
  • Turkmenistan 993
  • Turks & Caicos Islands 1-649
  • Tuvalu 688
  • U.S. Outlying Islands
  • U.S. Virgin Islands 1-340
  • UK 44
  • US 1
  • Uganda 256
  • Ukraine 380
  • United Arab Emirates 971
  • Uruguay 598
  • Uzbekistan 998
  • Vanuatu 678
  • Vatican City 39-06
  • Venezuela 58
  • Vietnam 84
  • Wallis & Futuna 681
  • Western Sahara 212
  • Yemen 967
  • Zambia 260
  • Zimbabwe 263
How Old Is Your Child?
  • Less Than 5 Years
  • 5 - 8 Years
  • 9 - 13 Years
  • 14 - 18 Years
  • 18+ Years

All software, music, documents, and any other information that is processed by a computer, is also stored using binary.

What are Decimal and Binary Numbers?

A number system that uses digits from 0 to 9 (ten digits) to represent the numbers is called a decimal number system. We all use decimal numbers in our day-to-day use.

A number system that uses only two digits 0 and 1 (binary digits) to represent the numbers is called a binary number system. Computers use a binary number system to store and process data and information.

decimal and binary numbers

How to Convert a Number to Binary

The base of decimal numbers is 10 and that of binary numbers is 2. (745)10 is a decimal number and (1100101)2 is a binary number.

Let’s see how one can convert decimal numbers to binary numbers and vice-versa.

You might be knowing that whenever we divide a number by 2, we are left with a remainder of either 0 or 1. To convert a decimal number to its binary equivalent, it is divided by 2, and the remainder is noted down. The process is repeated till we are left with a number less than 2. After that, all the remainders are written in order (moving from bottom to top). This series of 1s and 0s become the binary equivalent of the number.

To understand it better let’s consider an example of a decimal number 234.

convert a number to binary

Now, start from the bottom to get the binary equivalent of (234)10. Moving from the bottom and collecting all the 0s and 1s, we get 11101010. So, (234)10 = (11101010)2

Conversion of Numbers – Binary to Decimal

After learning how to convert a number to binary, let’s see how to convert a binary number to its decimal equivalent. To do so the binary number is expanded in the powers of 2 (the base of the binary number is 2).

11101010 = 0 ✖ 20 + 1 ✖ 21 + 0 ✖ 22 + 1 ✖ 23 + 0 ✖ 24 + 1 ✖ 25 + 1 ✖ 26 + 1 ✖ 27 

= 0 ✖ 1 + 1 ✖ 2 + 0 ✖ 4 + 1 ✖ 8 + 0 ✖ 16 + 1 ✖ 32 + 1 ✖ 64 + 1 ✖ 128

= 0 + 2 + 0 + 8 + 0 + 32 + 64 + 128 = 234

Conversion of Fractional Numbers – Decimal to Binary

Let’s now see how to convert a fractional decimal number to binary. To understand the process let’s consider a decimal number 0.125.

To convert any fractional decimal number, multiply the number by 2 and note down the integral part. And repeat the process until 0 is left.

0.125 ✖ 2 = 0.25 ——————–    0

0.25 ✖ 2 = 0.5 ———————–    0

0.5 ✖ 2 = 1.0 ————————-    1

Binary equivalent of (0.125)10 is (0.001)2

Conversion of Fractional Numbers – Binary to Decimal

To convert a binary fractional number to decimal, it is expanded in the powers of 2. The powers start from -1 after the decimal point.

Let’s consider an example of 0.10011.

0.10011 = 1 ✖ 2-1 + 0 ✖ 2-2 + 0 ✖ 2-3 + 1 ✖ 2-4 + 1 ✖ 2-5

= 1 ✖ 2-1 + 0 + 0 + 1 ✖ 2-4 + 1 ✖ 2-5

= 2-1 + 2-4 + 2-5

= (½) + (1/16) + (1/32) = (16 + 2 + 1)/32 = 19/32 = 0.59375

Conversion of Mixed Numbers – Decimal to Binary

Consider a mixed number 50.75. Here integral part is 50 and fractional part is 0.75

decimal and binary numbers

Therefore, (50.75)10 = (110010.11)2

Conversion of Mixed Numbers – Binary to Decimal

Now, consider a mixed binary number 111001.1101

111001.1101 = 1  20 + 0  21 + 0  22 + 1  23 + 1  24 + 1  25 + 1  2-1 + 1  2-2 + 0  2-3 + 1  2-4

= 1  1 + 0  2 + 0  4 + 1  8 + 1  16 + 1  32 + 1  (1/2) + 1  (1/4) + 0  (1/8) + 1  (1/16)

= 1 + 0 + 0 + 8 + 16 + 32 + (1/2) + (1/4) + 0 + (1/16)

= 57 + (8 + 4 + 1)/16 = 57 + 13/16 = 57 + 0.8125 = 57.8125

Therefore, (111001.1101)2 = (57.8125)10

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
>