• Home
  • /
  • Blog
  • /
  • Construction of Angles(Using Protractor & Compass)

Construction of Angles(Using Protractor & Compass)

construction of angles

This post is also available in: हिन्दी (Hindi)

An angle is a shape formed by two rays that share a common point (called a vertex). The construction of angles is one of the essential part of geometry. We can use a protractor to construct any type of angle. Also, there are methods by which we can construct some specific angles such as $60^{\circ}$, $30^{\circ}$, $120^{\circ}$, $90^{\circ}$, $45^{\circ}$, etc., using a compass and ruler (without using a protractor).

Let’s understand the procedure of construction of angles.

Construction of Angles Using a Protractor

With the help of a protractor, you can construct an angle of any measure. 

The steps involved in the construction of angles using a protractor are as follows.

Step 1: Draw a line

construction of angles

Step 2: Mark two points $\text{A}$ and $\text{B}$ on it.

construction of angles

Step 3: Place the centre of the protractor on point $\text{A}$, such that the line segment $\text{AB}$ is aligned with the line of the protractor.

construction of angles

Step 4: Starting from $0$ (in the protractor) mark the point $\text{C}$ on the paper as per the required angle.

construction of angles

Step 5: Join points $\text{A}$ and $\text{C}$. $\angle \text{BAC}$ is the required angle.

construction of angles

Step 6: Extend the line segment $\text{AC}$ as required.

construction of angles
Is your child struggling with Maths?
frustrated-kid
We can help!
Country
  • Afghanistan 93
  • Albania 355
  • Algeria 213
  • American Samoa 1-684
  • Andorra 376
  • Angola 244
  • Anguilla 1-264
  • Antarctica 672
  • Antigua & Barbuda 1-268
  • Argentina 54
  • Armenia 374
  • Aruba 297
  • Australia 61
  • Austria 43
  • Azerbaijan 994
  • Bahamas 1-242
  • Bahrain 973
  • Bangladesh 880
  • Barbados 1-246
  • Belarus 375
  • Belgium 32
  • Belize 501
  • Benin 229
  • Bermuda 1-441
  • Bhutan 975
  • Bolivia 591
  • Bosnia 387
  • Botswana 267
  • Bouvet Island 47
  • Brazil 55
  • British Indian Ocean Territory 246
  • British Virgin Islands 1-284
  • Brunei 673
  • Bulgaria 359
  • Burkina Faso 226
  • Burundi 257
  • Cambodia 855
  • Cameroon 237
  • Canada 1
  • Cape Verde 238
  • Caribbean Netherlands 599
  • Cayman Islands 1-345
  • Central African Republic 236
  • Chad 235
  • Chile 56
  • China 86
  • Christmas Island 61
  • Cocos (Keeling) Islands 61
  • Colombia 57
  • Comoros 269
  • Congo - Brazzaville 242
  • Congo - Kinshasa 243
  • Cook Islands 682
  • Costa Rica 506
  • Croatia 385
  • Cuba 53
  • Cyprus 357
  • Czech Republic 420
  • Denmark 45
  • Djibouti 253
  • Dominica 1-767
  • Ecuador 593
  • Egypt 20
  • El Salvador 503
  • Equatorial Guinea 240
  • Eritrea 291
  • Estonia 372
  • Ethiopia 251
  • Falkland Islands 500
  • Faroe Islands 298
  • Fiji 679
  • Finland 358
  • France 33
  • French Guiana 594
  • French Polynesia 689
  • French Southern Territories 262
  • Gabon 241
  • Gambia 220
  • Georgia 995
  • Germany 49
  • Ghana 233
  • Gibraltar 350
  • Greece 30
  • Greenland 299
  • Grenada 1-473
  • Guadeloupe 590
  • Guam 1-671
  • Guatemala 502
  • Guernsey 44
  • Guinea 224
  • Guinea-Bissau 245
  • Guyana 592
  • Haiti 509
  • Heard & McDonald Islands 672
  • Honduras 504
  • Hong Kong 852
  • Hungary 36
  • Iceland 354
  • India 91
  • Indonesia 62
  • Iran 98
  • Iraq 964
  • Ireland 353
  • Isle of Man 44
  • Israel 972
  • Italy 39
  • Jamaica 1-876
  • Japan 81
  • Jersey 44
  • Jordan 962
  • Kazakhstan 7
  • Kenya 254
  • Kiribati 686
  • Kuwait 965
  • Kyrgyzstan 996
  • Laos 856
  • Latvia 371
  • Lebanon 961
  • Lesotho 266
  • Liberia 231
  • Libya 218
  • Liechtenstein 423
  • Lithuania 370
  • Luxembourg 352
  • Macau 853
  • Macedonia 389
  • Madagascar 261
  • Malawi 265
  • Malaysia 60
  • Maldives 960
  • Mali 223
  • Malta 356
  • Marshall Islands 692
  • Martinique 596
  • Mauritania 222
  • Mauritius 230
  • Mayotte 262
  • Mexico 52
  • Micronesia 691
  • Moldova 373
  • Monaco 377
  • Mongolia 976
  • Montenegro 382
  • Montserrat 1-664
  • Morocco 212
  • Mozambique 258
  • Myanmar 95
  • Namibia 264
  • Nauru 674
  • Nepal 977
  • Netherlands 31
  • New Caledonia 687
  • New Zealand 64
  • Nicaragua 505
  • Niger 227
  • Nigeria 234
  • Niue 683
  • Norfolk Island 672
  • North Korea 850
  • Northern Mariana Islands 1-670
  • Norway 47
  • Oman 968
  • Pakistan 92
  • Palau 680
  • Palestine 970
  • Panama 507
  • Papua New Guinea 675
  • Paraguay 595
  • Peru 51
  • Philippines 63
  • Pitcairn Islands 870
  • Poland 48
  • Portugal 351
  • Puerto Rico 1
  • Qatar 974
  • Romania 40
  • Russia 7
  • Rwanda 250
  • Réunion 262
  • Samoa 685
  • San Marino 378
  • Saudi Arabia 966
  • Senegal 221
  • Serbia 381 p
  • Seychelles 248
  • Sierra Leone 232
  • Singapore 65
  • Slovakia 421
  • Slovenia 386
  • Solomon Islands 677
  • Somalia 252
  • South Africa 27
  • South Georgia & South Sandwich Islands 500
  • South Korea 82
  • South Sudan 211
  • Spain 34
  • Sri Lanka 94
  • Sudan 249
  • Suriname 597
  • Svalbard & Jan Mayen 47
  • Swaziland 268
  • Sweden 46
  • Switzerland 41
  • Syria 963
  • Sao Tome and Principe 239
  • Taiwan 886
  • Tajikistan 992
  • Tanzania 255
  • Thailand 66
  • Timor-Leste 670
  • Togo 228
  • Tokelau 690
  • Tonga 676
  • Trinidad & Tobago 1-868
  • Tunisia 216
  • Turkey 90
  • Turkmenistan 993
  • Turks & Caicos Islands 1-649
  • Tuvalu 688
  • U.S. Outlying Islands
  • U.S. Virgin Islands 1-340
  • UK 44
  • US 1
  • Uganda 256
  • Ukraine 380
  • United Arab Emirates 971
  • Uruguay 598
  • Uzbekistan 998
  • Vanuatu 678
  • Vatican City 39-06
  • Venezuela 58
  • Vietnam 84
  • Wallis & Futuna 681
  • Western Sahara 212
  • Yemen 967
  • Zambia 260
  • Zimbabwe 263
Age Of Your Child
  • Less Than 6 Years
  • 6 To 10 Years
  • 11 To 16 Years
  • Greater Than 16 Years

Construction of Angles Using a Compass and Ruler

The two basic constructions using a compass and ruler are

  • construction of 60 degree angle
  • bisecting an angle

If you know these two constructions, you can construct angles like $30^{\circ}$, $15^{\circ}$, $45^{\circ}$, $90^{\circ}$, $22.5^{\circ}$, $120^{\circ}$, $135^{\circ}$, etc.

Construction of 60 Degree Angle

The steps involved in the construction of 60 degree angle are

Step 1: Draw a line segment. Mark the left end as point $\text{O}$ and the right end as point $\text{B}$.

construction of angles

Step 2: Take the compass and open it up to a convenient radius. Place its pointer at $\text{O}$ and with the pencil head make an arc that meets the line $\text{OB}$ say at $\text{P}$.

construction of angles

Step 3: Place the compass pointer at $\text{P}$ and mark an arc that passes through $\text{O}$ and intersects the previous arc at a point, say at $\text{A}$.

construction of angles

Step 4: Draw a line from $\text{O}$ through $\text{A}$.

construction of angles

We get the required angle i.e. $\angle \text{AOB} = 60^{\circ}$.

construction of angles

Bisecting an Angle

Let’s start with an $\angle \text{AOB}$.

construction of angles

The steps involved in the bisection of an angle are

Step 1: Take the compass and open it up to a convenient radius. With $\text{O}$ as the centre, draw two arcs such that it cut the rays $\text{OA}$  and $\text{OB}$ at points $\text{C}$ and $\text{D}$ respectively.

construction of angles

Step 2: Without changing the distance between the legs of the compass, draw two arcs with $\text{C}$ and $\text{D}$ as centres, such that these two arcs intersect at a point say $\text{E}$.

construction of angles

Step 3: Join the $\text{O}$ with $\text{E}$.

construction of angles

$\text{OE}$ is the required angle bisector of $\angle \text{AOB}$.

Types of Coordinate Systems

Construction of Special Angles

As mentioned above, you can construct some of the special angles, if you know the construction of a $60^{\circ}$ angle and the bisection of an angle.

Here are the steps for constructing some of the angles.

Construction of 120 Degree Angle

A $120^{\circ}$ angle is exactly double that of A $60^{\circ}$ angle. If we know the construction of a $60^{\circ}$ angle, then we can easily construct a $120^{\circ}$ angle.

Here are the steps to construct a $120^{\circ}$ angle.

Step 1: Draw a line segment $\text{AB}$.

Step 2: With $\text{A}$ as a centre and draw an arc of proper length.

Step 3: Take $\text{D}$ as a centre with the same radius, and draw two marks $\text{E}$ and $\text{F}$ on the former arc.

Step 4: Join points $\text{A}$ and $\text{F}$ and produce to point $\text{C}$. Thus $\angle \text{CAB} = 120^{\circ}$.

Construction of 90 Degree Angle

A $90^{\circ}$ angle lies exactly between a $60^{\circ}$ angle and a $120^{\circ}$ angle. If we know the construction of $60^{\circ}$ and $120^{\circ}$ angles, then we can easily construct $90^{\circ}$ angle. 

Here are the steps to construct a $90^{\circ}$ angle.

Step 1: Draw a line segment $\text{OA}$.

Step 2: Taking $\text{O}$ as centre and using a compass draw an arc of some radius, that cuts $\text{OA}$ at $\text{B}$.

Step 3: Taking $\text{B}$ as centre and with the same radius draw another arc, that cuts the first arc at $\text{C}$.

Step 4: Taking $\text{C}$ as centre and with the same radius draw an arc, that cuts the first arc at $\text{D}$.

Step 5: Now taking $\text{C}$ and $\text{D}$ as centres and radius greater than the arc $\text{CD}$, draw two arcs, such that they intersect at $\text{E}$.

Step 6: Join $\text{OE}$ such that $\angle \text{AOE}$ is a $90^{\circ}$ angle.

Construction of 45 Degree Angle

A $45^{\circ}$ angle is exactly half of $90^{\circ}$. If we know the construction of $90^{\circ}$ angle and bisector of an angle, we can easily construct a $45^{\circ}$.

Here are the steps to construct a $45^{\circ}$ angle.

Step 1: Draw a line segment $\text{AB}$ on a plane sheet.

Step 2: With the centre, $\text{B}$ draw an arc that meets $\text{AB}$ at $\text{C}$.

Step 3: Take $\text{C}$ as a centre and with the same radius, mark two small arcs $\text{D}$ and $\text{E}$ on the former arc.

Step 4: Take $\text{D}$ and $\text{E}$ as centres and with the same radius, draw two arcs that meet each other at point $\text{G}$.

Step 5: Join points $\text{B}$ and $\text{G}$ such that $\angle \text{ABG} = 90^{\circ}$

Step 6: Draw the angle bisector $\text{BH}$ of $\angle \text{ABG}$ such that $\angle \text{ABH} = 45^{\circ}$.

Practice Problems

  1. Name the instrument with which you can construct an angle of any measure.
  2. What are the two basic constructions required to construct angles using a ruler and compass?
  3. Write down the steps to construct the following angles
    • $30^{\circ}$
    • $15^{\circ}$
    • $22.5^{\circ}$
    • $45^{\circ}$
    • $7.5^{\circ}$

FAQs

What is the construction of angles?

The construction of angles refers to constructing different angles such as $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$, etc. using a compass, protractor, ruler, and pencil. 

What is used for the construction of angles?

We can use a protractor to help us construct an angle of a given amount of degrees. We can also use a ruler and a compass to construct some special angles.

What are the two basic constructions required to construct an angle using a ruler and a compass?

The two basic constructions using a compass and ruler are
a) construction of 60 degree angle
b) bisecting an angle

Conclusion

The construction of angles is one of the essential part of geometry. You can use a protractor to construct any type of angle. You can also construct certain specific angles using a ruler and a compass.

Recommended Reading

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}
>