• Home
• /
• Blog
• /
• Construction of Angles(Using Protractor & Compass)

# Construction of Angles(Using Protractor & Compass)

December 10, 2022 This post is also available in: हिन्दी (Hindi)

An angle is a shape formed by two rays that share a common point (called a vertex). The construction of angles is one of the essential part of geometry. We can use a protractor to construct any type of angle. Also, there are methods by which we can construct some specific angles such as $60^{\circ}$, $30^{\circ}$, $120^{\circ}$, $90^{\circ}$, $45^{\circ}$, etc., using a compass and ruler (without using a protractor).

Let’s understand the procedure of construction of angles.

## Construction of Angles Using a Protractor

With the help of a protractor, you can construct an angle of any measure.

The steps involved in the construction of angles using a protractor are as follows.

Step 1: Draw a line

Step 2: Mark two points $\text{A}$ and $\text{B}$ on it.

Step 3: Place the centre of the protractor on point $\text{A}$, such that the line segment $\text{AB}$ is aligned with the line of the protractor.

Step 4: Starting from $0$ (in the protractor) mark the point $\text{C}$ on the paper as per the required angle.

Step 5: Join points $\text{A}$ and $\text{C}$. $\angle \text{BAC}$ is the required angle.

Step 6: Extend the line segment $\text{AC}$ as required.

Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

## Construction of Angles Using a Compass and Ruler

The two basic constructions using a compass and ruler are

• construction of 60 degree angle
• bisecting an angle

If you know these two constructions, you can construct angles like $30^{\circ}$, $15^{\circ}$, $45^{\circ}$, $90^{\circ}$, $22.5^{\circ}$, $120^{\circ}$, $135^{\circ}$, etc.

### Construction of 60 Degree Angle

The steps involved in the construction of 60 degree angle are

Step 1: Draw a line segment. Mark the left end as point $\text{O}$ and the right end as point $\text{B}$.

Step 2: Take the compass and open it up to a convenient radius. Place its pointer at $\text{O}$ and with the pencil head make an arc that meets the line $\text{OB}$ say at $\text{P}$.

Step 3: Place the compass pointer at $\text{P}$ and mark an arc that passes through $\text{O}$ and intersects the previous arc at a point, say at $\text{A}$.

Step 4: Draw a line from $\text{O}$ through $\text{A}$.

We get the required angle i.e. $\angle \text{AOB} = 60^{\circ}$.

### Bisecting an Angle

Let’s start with an $\angle \text{AOB}$.

The steps involved in the bisection of an angle are

Step 1: Take the compass and open it up to a convenient radius. With $\text{O}$ as the centre, draw two arcs such that it cut the rays $\text{OA}$  and $\text{OB}$ at points $\text{C}$ and $\text{D}$ respectively.

Step 2: Without changing the distance between the legs of the compass, draw two arcs with $\text{C}$ and $\text{D}$ as centres, such that these two arcs intersect at a point say $\text{E}$.

Step 3: Join the $\text{O}$ with $\text{E}$.

$\text{OE}$ is the required angle bisector of $\angle \text{AOB}$.

## Construction of Special Angles

As mentioned above, you can construct some of the special angles, if you know the construction of a $60^{\circ}$ angle and the bisection of an angle.

Here are the steps for constructing some of the angles.

### Construction of 120 Degree Angle

A $120^{\circ}$ angle is exactly double that of A $60^{\circ}$ angle. If we know the construction of a $60^{\circ}$ angle, then we can easily construct a $120^{\circ}$ angle.

Here are the steps to construct a $120^{\circ}$ angle.

Step 1: Draw a line segment $\text{AB}$.

Step 2: With $\text{A}$ as a centre and draw an arc of proper length.

Step 3: Take $\text{D}$ as a centre with the same radius, and draw two marks $\text{E}$ and $\text{F}$ on the former arc.

Step 4: Join points $\text{A}$ and $\text{F}$ and produce to point $\text{C}$. Thus $\angle \text{CAB} = 120^{\circ}$.

### Construction of 90 Degree Angle

A $90^{\circ}$ angle lies exactly between a $60^{\circ}$ angle and a $120^{\circ}$ angle. If we know the construction of $60^{\circ}$ and $120^{\circ}$ angles, then we can easily construct $90^{\circ}$ angle.

Here are the steps to construct a $90^{\circ}$ angle.

Step 1: Draw a line segment $\text{OA}$.

Step 2: Taking $\text{O}$ as centre and using a compass draw an arc of some radius, that cuts $\text{OA}$ at $\text{B}$.

Step 3: Taking $\text{B}$ as centre and with the same radius draw another arc, that cuts the first arc at $\text{C}$.

Step 4: Taking $\text{C}$ as centre and with the same radius draw an arc, that cuts the first arc at $\text{D}$.

Step 5: Now taking $\text{C}$ and $\text{D}$ as centres and radius greater than the arc $\text{CD}$, draw two arcs, such that they intersect at $\text{E}$.

Step 6: Join $\text{OE}$ such that $\angle \text{AOE}$ is a $90^{\circ}$ angle.

### Construction of 45 Degree Angle

A $45^{\circ}$ angle is exactly half of $90^{\circ}$. If we know the construction of $90^{\circ}$ angle and bisector of an angle, we can easily construct a $45^{\circ}$.

Here are the steps to construct a $45^{\circ}$ angle.

Step 1: Draw a line segment $\text{AB}$ on a plane sheet.

Step 2: With the centre, $\text{B}$ draw an arc that meets $\text{AB}$ at $\text{C}$.

Step 3: Take $\text{C}$ as a centre and with the same radius, mark two small arcs $\text{D}$ and $\text{E}$ on the former arc.

Step 4: Take $\text{D}$ and $\text{E}$ as centres and with the same radius, draw two arcs that meet each other at point $\text{G}$.

Step 5: Join points $\text{B}$ and $\text{G}$ such that $\angle \text{ABG} = 90^{\circ}$

Step 6: Draw the angle bisector $\text{BH}$ of $\angle \text{ABG}$ such that $\angle \text{ABH} = 45^{\circ}$.

## Practice Problems

1. Name the instrument with which you can construct an angle of any measure.
2. What are the two basic constructions required to construct angles using a ruler and compass?
3. Write down the steps to construct the following angles
• $30^{\circ}$
• $15^{\circ}$
• $22.5^{\circ}$
• $45^{\circ}$
• $7.5^{\circ}$

## FAQs

### What is the construction of angles?

The construction of angles refers to constructing different angles such as $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$, etc. using a compass, protractor, ruler, and pencil.

### What is used for the construction of angles?

We can use a protractor to help us construct an angle of a given amount of degrees. We can also use a ruler and a compass to construct some special angles.

### What are the two basic constructions required to construct an angle using a ruler and a compass?

The two basic constructions using a compass and ruler are
a) construction of 60 degree angle
b) bisecting an angle

## Conclusion

The construction of angles is one of the essential part of geometry. You can use a protractor to construct any type of angle. You can also construct certain specific angles using a ruler and a compass.