• Home
• /
• Blog
• /
• Complex Numbers – Definition, Properties & Examples

# Complex Numbers – Definition, Properties & Examples

August 19, 2022 This post is also available in: हिन्दी (Hindi)

Complex numbers are helpful in finding solutions involving the square root of negative numbers such as quadratic equations when the discriminant $b^{2} – 4ac \lt 0$.  A complex number is written as $a + ib$ where $a$ and $b$ are real numbers and $i$ is an imaginary unit.

Complex numbers have applications such as in scientific research, signal processing, electromagnetism, fluid dynamics, quantum mechanics, and vibration analysis. Let’s understand what is a complex number.

## What Are Complex Numbers?

A complex number consists of two parts – a real part and an imaginary part and is expressed as a sum of these two parts. A complex number is generally denoted by the letter $z$.

$z = a + ib$, where $a$ and $b$ are real numbers and $i$ is an imaginary unit $\left( = \sqrt{-1} \right)$.

Note

• $a$ and $b$ are real numbers, $i$ is an imaginary unit
• $a$ is called the real part and $ib$ is called the imaginary part of a complex number
• The real part of a complex number $z$ is denoted by $Re\left(z \right)$ and the imaginary part is denoted by $Im\left(z \right)$

## Graphing Complex Numbers – Argand Plane

A complex number $z = a + ib$ consists of a real part $a = \left( Re\left( z\right) \right)$ and an imaginary part $b = \left( Im\left( z\right) \right)$, which can be considered as an ordered pair $\left(Re \left(z \right), Im\left(z \right) \right)$ and can be represented as coordinates points in the Euclidean plane.

The euclidean plane with reference to complex numbers is called the complex plane or the Argand Plane, named after Jean-Robert Argand. The complex number $z = a + ib$ is represented with the real part – $a$, with reference to the $x$-axis, and the imaginary part- $ib$, with reference to the $y$-axis.

In this argand plane, two terms are associated – modulus of a complex number and argument of a complex number. Let us try to understand these two important terms.

Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

### Modulus of Complex Number

The distance of the complex number represented as a point in the argand plane $\left(a, ib \right)$ is called the modulus of the complex number. This distance is a linear distance from the origin $\left(0, 0 \right)$ to the point $\left(a, ib \right)$, and is measured as $r = | \sqrt{a^2 + b^2}|$.

This expression is derived from the Pythagoras theorem, where the modulus represents the hypotenuse, the real part is the base, and the imaginary part is the altitude of the right-angled triangle.

### Example

Let’s consider a complex number $z = 1 + i$, to understand how the modulus of a complex number is calculated.

Here, $a = 1$ and $b = 1$.

Therefore, the modulus $r = \sqrt {a^{2} + b^{2}} = \sqrt {1^{2} + 1^{2}} = \sqrt {1 + 1} = \sqrt {2}$.

### Argument of Complex Number

The angle made by the line joining the geometric representation of the complex number and the origin, with the positive $x$ – axis, in the anticlockwise direction is called the argument $\left( \theta \right)$ of the complex number. The argument of the complex number is the inverse of the $tan$ of the imaginary part $b$ divided by the real part $a$ of the complex number. $Argz \left(\theta \right) = \tan^{-1} \left(\frac {b}{a} \right)$.

### Example

Let’s consider the above complex number $z = 1 + i$, to understand how the argument of a complex number is calculated.

Here, $a = 1$ and $b = 1$.

In the triangle in the figure, $\tan \theta = \frac {b}{a} = \frac {1}{1} = 1$

Therefore, $\theta = \tan^{-1}\left ( 1\right) = 45^{\circ} \text{ or } \frac {\pi}{4}$.

## Polar Form of Complex Number

In a polar form, any point is represented in terms of two values.

• The distance of a point from the origin
• The angle made by the line joining the point and the origin with the positive direction of $x$ – axis.

A point $P\left(x, y \right)$ in polar coordinates is represented as $P\left(r, \theta \right)$, where

$r = \sqrt{x^{2} + y^{2}}$ and $\tan \theta = \frac {y}{x} => \theta = \tan^{-1}\left( \frac {y}{x}\right)$.

In case of a complex number $a + ib$, we get

• $r = \sqrt{a^{2} + b^{2}}$ and $\tan \theta = \frac {b}{a} => \theta = \tan^{-1}\left( \frac {b}{a}\right)$.
• And, $\cos \theta = \frac {a}{r} => a = r \cos \theta$ and $\sin \theta = \frac {b}{r} => b = r \sin \theta$.

Therefore, in polar coordinates a complex number $z = a + ib$ can be written as $z = r \cos \theta + i r \sin \theta = r\left(\cos \theta + i \sin \theta \right)$.

## Properties of Complex Numbers

Like other numbers such as natural numbers, whole numbers, integers, rational numbers, irrational numbers, or real numbers, complex numbers also exhibit certain properties. The properties of complex numbers are as follows.

### Equality of Complex Numbers

For any two complex numbers $z_{1} = a_{1} + i b_{1}$ and $z_{2} = a_{2} + i b_{2}$, $z_{1} = z_{2}$, if $a_{1} = a_{2}$ and $b_{1} = b_{2}$.

### Examples

Ex 1: If complex numbers $z_{1} = 3 – 2i$ and $z_{2} = x + yi$ are equal, then find $x$ and $y$.

For any two complex numbers $z_{1} = a_{1} + i b_{1}$ and $z_{2} = a_{2} + i b_{2}$, $z_{1} = z_{2}$, if $a_{1} = a_{2}$ and $b_{1} = b_{2}$.

Therefore, $x = 3$ and $y = -2$.

Ex 2: If complex numbers $z_{1} = 5 + i$ and $z_{2} = \left(a + b \right) + \left(a – b \right)i$ are equal, then find $a$ and $b$.

For any two complex numbers $z_{1} = a_{1} + i b_{1}$ and $z_{2} = a_{2} + i b_{2}$, $z_{1} = z_{2}$, if $a_{1} = a_{2}$ and $b_{1} = b_{2}$.

Therefore,

$a + b = 5$ ——————– (1)

$a – b = 1$ ——————– (2)

Solving equations (1) & (2), we get $a = 3$ and $b = 2$.

For every complex number $z = a + ib$, there exists a complex number $z_{0} = 0 + i0$, such that $z + z_{0} = z_{0} + z = z$. The complex number $z_{0} = 0 + i0$ is called the additive identity of complex numbers.

Note: In $z_{0} = 0 + i0$, $r = \sqrt{0^{2} + 0^{2}} = 0$ and $\theta = \tan^{-1} \left( \frac {0}{0}\right) = \frac {\pi}{2}$.

### Existence of Multiplicative Identity

For every complex number $z = a + ib$, there exists a complex number $z_{1} = 1 + i0$, such that $z \times z_{1} = z_{1} \times z = z$. The complex number $z_{1} = 1 + i0$ is called multiplicative identity of complex numbers.

Note: In $z_{1} = 1 + i0$, $r = \sqrt{1^{2} + 0^{2}} = 1$ and $\theta = \tan^{-1} \left( \frac {0}{1}\right) = 0$.

For any complex number $z = a + ib$, there exists a complex number $-z = -\left(a + ib \right) = -a – ib$, such that $z + \left(-z \right) = -z + z = 0$. The complex number $-z$ is called the additive inverse of the complex number $z$.

### Examples

Ex 1: Find additive inverse of $z = 3 – 2i$.

Additive inverse of $3 – 2i$ is $- \left(3 – 2i \right) = -3 + 2i$.

Ex 2: Find additive inverse of $z = -6 – 5i$.

Additive inverse of $z = -6 – 5i$ is $-\left(-6 – 5i \right) = 6 + 5i$.

### Existence of Multiplicative Inverse

For any complex number $z = a + ib$, there exists a complex number $z^{-1} = \frac {1}{z} = \frac {1}{a + ib}$, such that $z \times z^{-1} = z^{-1} \times z = 1$.

$z^{-1} = \frac {1}{z} = \frac {1}{a + ib}$

Multiplying the numerator and denominator by $a – ib$, we get

$z^{-1} = \frac {1}{a + ib} \times \frac {a – ib}{a – ib} = \frac {1 \times \left(a – ib \right)}{\left(a + ib \right) \left(a – ib \right)} = \frac {a – ib}{a^{2} – \left(ib \right)^{2}} = \frac {a – ib}{a^{2} – i^{2}b^{2}} = \frac {a – ib}{a^{2} + b^{2}}$.

Therefore, multiplicative inverse of any complex number $z = a + ib$ is $z^{-1} = \frac {a}{a^{2} + b^{2}} – i \frac {b}{a^{2} + b^{2}}$.

### Examples

Ex 1: Find multiplicative inverse of $z = 1 + i$.

In $z = 1 + i$, $a = 1$ and $b = 1$, therefore, multiplicative inverse of $z = 1 + i$ is $z^{-1} = \frac {a}{a^{2} + b^{2}} – i \frac {b}{a^{2} + b^{2}} = \frac {1}{1^{2} + 1^{2}} – i \frac {1}{1^{2} + 1^{2}} = \frac {1}{2} – i \frac {1}{2}$

Ex 2: Find the multiplicative inverse of $z = 2 + 3i$.

In $z = 2 + 3i$, $a = 2$ and $b = 3$, therefore, multiplicative inverse of $z = 2 + 3i$ is $z^{-1} = \frac {a}{a^{2} + b^{2}} – i \frac {b}{a^{2} + b^{2}} = \frac {2}{2^{2} + 3^{2}} – i \frac {2}{2^{2} + 3^{2}} = \frac {2}{4 + 9} – i \frac {2}{4 + 9} = \frac {2}{13} – i \frac {2}{13}$.

### Closure Property of Complex Numbers

The closure property of a complex number states that for any two complex numbers $z_{1}$ and $z_{2}$ the result of addition, subtraction, multiplication, and division is also a complex number, i.e., the closure property holds for all the four arithmetic operations.

#### Closure Property of Addition of Complex Numbers

For any two complex numbers $z_{1}$ and $z_{2}$, the sum $z_{1} + z_{2}$ is also a complex number.

For example, for two complex numbers $2 – 4i$ and $6 + 7i$, the sum $\left(2 – 4i \right) + \left(6 + 7i \right) = 8 + 3i$ is also a complex number.

#### Closure Property of Subtraction of Complex Numbers

For any two complex numbers $z_{1}$ and $z_{2}$, the difference $z_{1} – z_{2}$ is also a complex number.

For example, for two complex numbers $9 + 5i$ and $-3 + 4i$, the difference $\left(9 + 5i \right) – \left(-3 + 4i \right) = 12 + i$ is also a complex number. Also $\left(-3 + 4i \right) – \left(9 + 5i \right) = -12 – i$ is also a complex number.

#### Closure Property of Multiplication of Complex Numbers

For any two complex numbers $z_{1}$ and $z_{2}$, the product $z_{1} \times z_{2}$ is also a complex number.

For example, for two complex numbers $1 + 3i$ and $3 + 2i$, the product $\left(1 + 3i \right) \times \left(3 + 2i \right) = -3 + 11i$ is also a complex number.

#### Closure Property of Division of Complex Numbers

For any two complex numbers $z_{1}$ and $z_{2}$, the quotient $z_{1} \div z_{2}$ is also a complex number.

For example, for two complex numbers $2 + i$ and $1 – i$, the quotient $\left(2 + i \right) \div \left(1 – i \right) = \frac {1}{2} – \frac {3}{2}i$ is also a complex number.

### Commutative Property of Complex Numbers

The commutative property states that the result of the operation remains the same, even if the order of the numbers is changed. The commutative property holds for the addition and multiplication of complex numbers.

#### Commutative Property of Addition of Complex Numbers

The commutative property of addition states that for any two complex numbers $z_{1}$ and $z_{2}$, $z_{1} + z_{2} = z_{2} + z_{1}$.

#### Examples

Ex 1: Verify the commutative property of addition of complex numbers for $z_{1} = 5 + 3i$ and $z_{2} = -3 + 2i$.

$z_{1} + z_{2} = \left(5 + 3i \right) + \left(-3 + 2i \right) = (5 – 3) + (3 + 2)i = 2 + 5i$

And $z_{2} + z_{1} = \left(-3 + 2i \right) + \left(5 + 3i \right) = (-3 + 5) + (2 + 3)i = 2 + 5i$