• Home
• /
• Blog
• /
• Comparing Fractions (With Methods & Examples)

# Comparing Fractions (With Methods & Examples)

July 29, 2022 Comparing fractions means determining the larger and the smaller fraction between two or more fractions. Knowledge of comparing fractions is also needed while arranging the fractions in ascending or descending order.

It’s comparatively easier to compare like fractions compared to unlike fractions which involve a specific set of rules.

Let’s learn how to compare fractions.

## Comparing Fractions

The process of comparing fractions is different for different types of fractions. Comparing like fractions is quite simple as compared to the other types.

### Comparing Like Fractions

Like fractions are the fractions with the same denominators. When denominators of the fractions are the same, then it is very easy to compare fractions. Fractions with numerators smaller in value are less compared to the fractions whose numerators are larger in value.

### Steps to Compare Like Fractions

Consider two like fractions $\frac {a}{c}$ and $\frac {b}{c}$ with common denominators $c$.

Step 1: Compare the numerators.

Step 2: If $a \gt b$, then $\frac {a}{c}$ is greater, otherwise $\frac {b}{c}$ is greater. Maths can be really interesting for kids

### Examples

Ex 1: Which of these fractions is greater – $\frac {2}{5}$ or $\frac {4}{5}$?

Observe that denominators of the fractions $\frac {2}{5}$ and $\frac {4}{5}$ are the same which is equal to $5$.

Since, $4 \gt 2$, therefore,  $\frac {4}{5} \gt \frac {2}{5}$.

You can also observe the difference between these two fractions visually.

Ex 2: Which of these fractions is greater – $\frac {3}{8}$ or $\frac {7}{8}$?

Observe that denominators of the fractions $\frac {3}{8}$ and $\frac {7}{8}$ are the same which is equal to $8$.

Since, $7 \gt 3$, therefore,  $\frac {7}{8} \gt \frac {3}{8}$.

You can also observe the difference between these two fractions visually.

Note: Denominator in a fraction represents the total number of parts in a whole.

Is your child struggling with Maths? We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

### Comparing Unlike Fractions

To compare unlike fractions, i.e., the fractions with different denominators, the first step is to convert them to fractions with the same denominator, i.e., to convert the unlike fractions to like fractions.

### Steps to Compare Like Fractions

Consider two like fractions $\frac {a}{b}$ and $\frac {c}{d}$.

Note: The denominators of the fractions $b$ and $d$ are different.

Step 1: Find the LCM of their denominators, i.e., LCM of $b$ and $d$

Step 2: Now, multiply each denominator by a number so that  they become equal to LCM

Step 3: Multiply the numerator of each fraction by a number multiplied by its denominator

Step 4: Compare the numerators

Step 5: The fraction with the larger numerator is the larger fraction

### Examples

Ex 1: Which of the given fractions is greater – $\frac {1}{2}$ or $\frac {3}{4}$?

Denominators of the two fractions $2$ and $4$ are different.

LCM of $2$ and $4$ is $4$.

$\frac {1}{2} = \frac {1 \times 2}{2 \times 2} = \frac {2}{4}$

Now the denominator of the two fractions are equal, so compare their numerators.

Since, $3 \gt 2$, therefore, $\frac {3}{4} \gt \frac {1}{2}$

You can also observe the difference between these two fractions visually.

Ex 2: Which of the given fractions is greater – $\frac {3}{4}$ or $\frac {5}{14}$?

Denominators of the two fractions $4$ and $14$ are different.

LCM of $4$ and $14$ is $28$.

Now, we’ll find the numbers to be multiplied with each of the fractions. To do so, divide LCM by each of the denominators.

For fraction $\frac {3}{4}$, the number is $28 \div 4 = 7$

And for fraction $\frac {5}{14}$, the number is $28 \div 14 = 2$

Now, multiply the numerator and denominator of $\frac {3}{4}$  by $7$ and multiply the numerator and denominator of $\frac {5}{14}$  by $2$

$\frac {3 \times 7}{4 \times 7} = \frac {21}{28}$

$\frac {5 \times 2}{14 \times 2} = \frac {10}{28}$

Since, $21 \gt 10$, therefore, $\frac {3}{4} \gt \frac {5}{14}$

You can also observe the difference between these two fractions visually.

### Comparing Fractions With Same Numerators

Comparing fractions with the same numerators is completely opposite to that comparing fractions with the same denominators. When you compare two fractions with the same numerator, then the fraction with a lesser denominator is greater than the fraction with a larger denominator.

### Steps to Compare Fractions With Same Numerators

Consider two like fractions $\frac {a}{b}$ and $\frac {a}{c}$ with common numerators $a$.

Step 1: Compare the denominators

Step 2: If $b \lt c$, then $\frac {a}{b}$ is greater, otherwise $\frac {a}{c}$ is greater.

### Examples

Ex 1: Which of the given fractions is greater – $\frac {1}{2}$ or $\frac {1}{3}$?

Observe that the numerators of the two fractions are the same and equal to $1$.

Since, $2 \lt 3$, therefore, $\frac {1}{2} \gt \frac {1}{3}$.

You can also observe the difference between these two fractions visually.

Ex 2: Which of the given fractions is greater – $\frac {2}{4}$ or $\frac {2}{8}$?

Observe that the numerators of the two fractions are the same and equal to $1$.

Since, $2 \lt 4$, therefore, $\frac {2}{4} \gt \frac {2}{8}$.

You can also observe the difference between these two fractions visually.

## Arranging Fractions

The fractions can be arranged either in ascending order or descending order. Depending on the types of fractions, here also different steps are involved to arrange the fractions.

• Like Fractions
• Unlike Fractions
• Fractions With Same Numerators

Note:

• Ascending order means from lowest to largest.
• Descending order means from largest to smallest.

### Arranging Like Fractions

As seen above in the case of like fractions, the fraction with the larger numerator is greater than the fraction with the smaller numerator. So, you can arrange the like fractions by comparing their numerators.

### Steps to Arrange Like Fractions

The steps to arrange the like fractions are

Step 1: Compare the numerators.

Step 2: Arrange the fractions in desired order according to their numerators

### Examples

Ex 1: Arrange the fractions in ascending order

$\frac {2}{9}$, $\frac {7}{9}$, $\frac {8}{9}$, $\frac {6}{9}$, $\frac {1}{9}$, $\frac {5}{9}$, $\frac {3}{9}$ and $\frac {4}{9}$

Arranging the numerators in ascending order: $1 \lt 2 \lt 3 \lt 4 \lt 5 \lt 6 \lt 7 \lt 8$, therefore,

$\frac {1}{9} \lt \frac {2}{9} \lt \frac {3}{9} \lt \frac {4}{9} \lt \frac {5}{9} \lt \frac {6}{9} \lt \frac {7}{9} \lt \frac {8}{9}$.

Ex 2: Arrange the fractions in descending order

$\frac {5}{15}$, $\frac {9}{15}$, $\frac {1}{15}$, $\frac {11}{15}$, $\frac {7}{15}$

Arranging the numerators in descending order: $11 \gt 9 \gt 7 \gt 5 \gt 1$, therefore, $\frac {11}{15} \gt \frac {9}{15} \gt \frac {7}{15} \gt \frac {5}{15} \gt \frac {1}{15}$

### Arranging Unlike Fractions

As seen above, to compare unlike fractions first the common denominator (LCM) is computed and then numerators of fractions are changed according to the LCM as denominators.

The same process is used while arranging the, unlike fractions.

### Steps to Arrange Unlike Fractions

The steps to arrange the unlike fractions are

Step 1: Find the LCM of denominators of fractions

Step 2: Now, multiply each denominator by a number so that  they become equal to LCM

Step 3: Multiply the numerator of each fraction by a number multiplied by its denominator

Step 4: Arrange the numerators

### Examples

Ex 1: Arrange the fractions in ascending order $\frac {5}{6}, \frac {2}{3}, \frac {1}{2}, \frac {3}{4}, \frac {2}{5}$ in ascending order.

The denominators in the fractions are $2$, $3$, $4$, $5$ and $6$.

LCM of $2$, $3$, $4$, $5$ and $6$ is $60$.

Now converting fractions to equivalent fractions, we get

$\frac {5}{6} =$\frac {5 \times 10}{6 \times 10} = $\frac {50}{60}$

$\frac {2}{3} =$\frac {2 \times 20}{3 \times 20} = $\frac {40}{60}$

$\frac {1}{2} =$\frac {1 \times 30}{2 \times 30} = $\frac {30}{60}$

$\frac {3}{4} =$\frac {3 \times 15}{4 \times 15} = $\frac {45}{60}$

$\frac {2}{5} =$\frac {2 \times 12}{5 \times 12} = $\frac {24}{60}$

Arranging the numerators in ascending order $24 \lt 30 \lt 40 \lt 45 \lt 50$, therefore, $\frac {2}{5} \lt \frac {1}{2} \lt \frac {2}{3} \lt \frac {3}{4} \lt \frac {5}{6}$.

Ex 2: Arrange the fractions in descending order $\frac {3}{5}$, $\frac {6}{8}$, $\frac {2}{3}$ and $\frac {4}{7}$ in descending order.

LCM of denominators $5$, $8$, $3$, and $7$ is $840$.

Converting the given fractions to their equivalent fractions.

$\frac {3}{5} = \frac {3 \times 168}{5 \times 168} = \frac {504}{840}$

$\frac {6}{8} = \frac {6 \times 105}{8 \times 105} = \frac {630}{840}$

$\frac {2}{3} = \frac {2 \times 280}{3 \times 280} = \frac {560}{840}$

$\frac {4}{7} = \frac {4 \times 120}{7 \times 120} = \frac {480}{840}$

Arranging 504, 630, 560, and 480 in descending order

$630 \gt 560 \gt 504 \gt 480$, therefore, $\frac {6}{8} \gt \frac {2}{3} \gt \frac {3}{5} \gt \frac {4}{7}$

### Arranging Fractions With Same Numerators

As seen above, when the numerators of the fractions are equal, then the fraction with a lesser denominator is greater than the fraction with a greater denominator, therefore, you can arrange these fractions by comparing their denominators.

### Steps to Arrange Fractions With Same Numerators

The following steps are used to compare with the same numerators.

Step 1: Compare the denominators

Step 2: Arrange the fractions in descending order of their denominators to arrange them in ascending order and vice-versa

### Examples

Ex 1: Arrange the fractions in ascending order $\frac {2}{9}$, $\frac {2}{4}$, $\frac {2}{5}$, $\frac {2}{6}$, $\frac {2}{8}$ in ascending order.

Observe that the numerators of the fractions are equal.

Arranging the denominators 9, 4, 5, 6, and 8 in descending order, we get $9 \lt 8 \lt 6 \lt 5 \lt 4$.

Therefore, the fractions in ascending order will be $\frac {2}{9} \lt \frac {2}{8} \lt \frac {2}{6} \lt \frac {2}{5} \lt \frac {2}{4}$.

Ex 2: Arrange the fractions in descending order $\frac {4}{7}$, $\frac {4}{19}$, $\frac {4}{14}$, $\frac {4}{17}$ and $\frac {4}{8}$ in descending order.

Here also the numerators of the fractions are equal.

Arranging the denominators $7$, $19$, $14$, $17$, and $8$ in ascending order, we get $7 \lt 8 \lt 14 \lt 17 \lt 19$.

Therefore $\frac {4}{7} \gt \frac {4}{8} \gt \frac {4}{14} \gt \frac {4}{17} \gt \frac {4}{19}$.

## Conclusion

A comparison of fractions is needed while solving many types of problems. Depending on the type of fractions you are comparing, a suitable method is required to compare the fractions.

## Problems

1. Select the greater fraction among the given pairs of fractions
• $\frac {8}{15}$ and $\frac {8}{17}$
• $\frac {2}{9}$ and $\frac {7}{9}$
• $\frac {15}{32}$ and $\frac {21}{56}$
• $\frac {5}{21}$ and $\frac {5}{42}$
• $\frac {9}{11}$ and $\frac {5}{11}$
• $\frac {14}{29}$ and $\frac {4}{12}$
2. Arrange the following fractions in ascending order
• $\frac {2}{7}$, $\frac {4}{11}$, $\frac {1}{9}$ and $\frac {5}{6}$
• $\frac {3}{5}$, $\frac {1}{4}$, $\frac {6}{7}$ and $\frac {3}{11}$
3. Arrange the following fractions in descending order
• $\frac {5}{13}$, $\frac {2}{7}$, $\frac {1}{4}$, and $\frac {6}{7}$
• $\frac {4}{9}$, $\frac {7}{15}$, $\frac {2}{8}$, and $\frac {4}{11}$