• Home
• /
• Blog
• /
• Associative Property – Meaning & Examples

# Associative Property – Meaning & Examples

August 5, 2022

This post is also available in: हिन्दी (Hindi)

What comes to mind when you hear the word associative? Associate means to ‘connect’ or ‘to group’. In the same way, the associative property allows us to group terms that are joined by addition or multiplication in various ways. Parentheses are used to group the terms, and they establish the order of operations. Work inside the parentheses is always done first.

Let’s understand what is associative property and how it is used.

## What is Associative Property?

The associative property states that the sum or the product of any three or more numbers is not affected by the way in which the numbers are grouped by parentheses. In other words, if the same numbers are grouped in a different way for addition and multiplication, their result remains the same.

Mathematically it can be stated as

If $A$, $B$, and $C$ are any three numbers then,

• For addition: $\left(A + B \right) + C = A + \left(B + C \right)$
• For multiplication: $\left(A \times B \right) \times C = A \times \left(B \times C \right)$

Note

• The associative law is applicable to addition and multiplication
• The associative law is not applicable to subtraction and division

### A. Associative Property of Addition

The associative property of addition states that $\left(A + B \right) + C = A + \left(B + C \right)$.

Let’s understand the associative property of addition by this example.

Consider three numbers $A = 5$, $B = 7$ and $C = 3$.

Left Hand Side of the statement becomes $\left(5 + 7 \right) + 3 = 12 + 3 = 15$.

And, the Right-Hand Side of the statement is $5 + \left(7 + 3 \right) = 5 + 10 = 15$.

The result of both is the same ($=15$).

Consider one more example by taking $A = 18$, $B = 23$, and $C = 32$.

Left Hand Side of the statement becomes $\left(18 + 23 \right) + 32 = 41 + 32 = 73$.

And, the Right-Hand Side of the statement is $18 + \left(23 + 32 \right) = 18 + 55 = 73$.

In this case, also the result of both is the same ($=73$).

So, based on the associative property of addition we can say that the sum of three or more numbers always remains the same whatever way we group the numbers to add them.

### B. Associative Property of Multiplication

The associative property of multiplication states that $\left(A \times B \right) \times C = A \times \left(B \times C \right)$.

Let’s understand the associative property of multiplication by this example.

Consider three numbers $A = 3$, $B = 2$ and $C = 5$.

Left Hand Side of the statement becomes $\left(3 \times 2 \right) \times 5 = 6 \times 5 = 30$.

And, the Right-Hand Side of the statement is $3 \times \left(2 \times 5 \right) = 3 \times 10 = 30$.

The result of both is the same ($=30$).

Consider one more example by taking $A = 12$, $B = 15$, and $C = 40$.

Left Hand Side of the statement becomes $\left(12 \times 15 \right) \times 40 = 180 \times 40 = 7200$.

And, the Right-Hand Side of the statement is $12 \times \left(15 \times 40 \right) = 12 \times 600 = 7200$.

In this case, also the result of both is the same ($=7200$).

So, based on the associative property of multiply we can say that the product of three or more numbers always remains the same whatever way we group the numbers to multiply them.

## Is Associative Property Applicable to Numbers of All Categories?

The associative property in both the two forms – associative property of addition and associative property of multiplication works well with any real number

Note: A set of real numbers $R$ is a superset of sets of natural numbers, a set of whole numbers, a set of integers, a set of rational numbers, and a set of irrational numbers.

### Associative Property of Natural Numbers and Whole Numbers

Consider any three whole numbers $45$, $67$, and $13$.

We want to verify that $\left(A + B \right) + C = A + \left(B + C \right)$

$\left(45 + 67 \right) + 13 = 45 + \left(67 + 13 \right)$

$=>112 + 13 = 45 + 80 => 125 = 125$.

Also, $\left(0 + 12 \right) + 19 = 0 + \left(12 + 19 \right)$

$=>12 + 19 = 0 + 31 => 31 = 31$.

Is your child struggling with Maths?
We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

#### Associative Property of Multiplication

We want to verify that $\left(A \times B \right) \times C = A \times \left(B \times C \right)$

$\left(45 \times 67 \right) \times 13 = 45 \times \left(67 \times 13 \right)$

$=>3015 \times 13 = 45 \times 871 => 39195 = 39195$.

Also, $\left(0 \times 12 \right) \times 19 = 0 \times \left(12 \times 19 \right)$

$=>0 \times 19 = 0 \times 228 => 0 = 0$.

### Associative Property of Integers (Signed Numbers)

Consider any three integers $-11$, $B=+16$ and $C=-14$.

We want to verify that $\left(A + B \right) + C = A + \left(B + C \right)$

$\left(-11 + 16 \right) + \left(-14 \right) = -11 + \left(16 + \left(-14 \right) \right)$

$=> 5 + \left(-14 \right) = -11 + \left(16 – 14 \right)$

$=> 5 – 14 = -11 + 2$ $=>-9 = -9$

#### Associative Property of Multiplication

We want to verify that $\left(A \times B \right) \times C = A \times \left(B \times C \right)$

$\left(-11 \times 16 \right) \times \left(-14 \right) = -11 \times \left(16 \times \left(-14 \right) \right)$

$=> -176 \times \left(-14 \right) = -11 \times \left(-224 \right)$

$=> 2464 =2464$

### Associative Property of Decimal Numbers

Consider any three decimal numbers $A = 2.5$, $B = 5.6$ and $C = 0.8$.

We want to verify that We want to verify that $\left(A + B \right) + C = A + \left(B + C \right)$

$\left(2.5 + 5.6 \right) + 0.8 = 2.5 + \left(5.6 + 0.8 \right)$

$=> 8.1 + 0.8 = 2.5 + 6.4 => 8.9 = 8.9$

#### Associative Property of Multiplication

We want to verify that We want to verify that $\left(A \times B \right) \times C = A \times \left(B \times C \right)$

$\left(2.5 \times 5.6 \right) \times 0.8 = 2.5 \times \left(5.6 \times 0.8 \right)$

$=>14 \times 0.8 = 2.5 \times 4.48 => 11.2 = 11.2$

### Associative Property of Fractions

Consider any three fractions $A = \frac {1}{2}$, $B = \frac {2}{3}$ and $C = \frac {3}{4}$.

We want to verify that $\left(A + B \right) + C = A + \left(B + C \right)$

$\left(\frac {1}{2} + \frac {2}{3} \right) + \frac {3}{4} = \frac {1}{2} + \left(\frac {2}{3} + \frac {3}{4} \right)$

$=> \frac{23}{12} = \frac{23}{12}$

#### Associative Property of Multiplication

We want to verify that $\left(A \times B \right) \times C = A \times \left(B \times C \right)$

$\left(\frac {1}{2} \times \frac {2}{3} \right) \times \frac {3}{4} = \frac {1}{2} \times \left(\frac {2}{3} \times \frac {3}{4} \right)$

$=> \frac {1}{3} \times \frac {3}{4} = \frac {1}{2} \times \frac {1}{2}$

$=> \frac {1}{4}= \frac {1}{4}$

### Associative Property of Irrational Numbers

Consider any three irrational numbers $A = 2\sqrt{3}$, $B = 3\sqrt{2}$ and $C = 5\sqrt{2}$.

We want to verify that $\left(A + B \right) + C = A + \left(B + C \right)$

$\left(2\sqrt{3} + 3\sqrt{2} \right) + 5\sqrt{2} = 2\sqrt{3} + \left(3\sqrt{2} + 5\sqrt{2} \right)$

$=>2\sqrt{3} + 3\sqrt{2} + 5\sqrt{2} = 2\sqrt{3} + 8\sqrt{2}$

$=>2\sqrt{3} + 8\sqrt{2} = 2\sqrt{3} + 8\sqrt{2}$

#### Associative Property of Multiplication

We want to verify that $\left(A \times B \right) \times C = A \times \left(B \times C \right)$

$\left(2\sqrt{3} \times 3\sqrt{2} \right) \times 5\sqrt{2} = 2\sqrt{3} \times \left(3\sqrt{2} \times 5\sqrt{2} \right)$

$=>6\sqrt{6} \times 5\sqrt{2} = 2\sqrt{3} \times 30$ $=>30\sqrt{12} = 60\sqrt{3}$

$=>30\sqrt{4 \times 3} = 60\sqrt{3}$ $=>30\times 2 \sqrt{3} = 60\sqrt{3}$ $=>60\sqrt{3} = 60\sqrt{3}$

## Is the Associative Property Applicable to Subtraction and Division?

Let’s verify whether the associative property is applicable to subtraction and division also, i.e.,

• $\left(A – B \right) – C = A – \left(B – C \right)$
• $\left(A \div B \right) \div C = A \div \left(B \div C \right)$

Again consider any three numbers $A = 5$, $B = -2$ and $C = 0.5$

### Subtraction

LHS = $\left(5 – \left(-2 \right) \right) – 0.5 = 5 + 2 – 0.5 = 6.5$

RHS = $5 – \left(-2 – 0.5 \right) = 5 – \left(-2.5 \right) = 5 + 2.5 = 7.5$

Since, LHS $\ne$ RHS, therefore, the associative property does not hold for subtraction.

### Division

LHS = $\left(5 \div \left(-2 \right) \right) \div 0.5 = -\frac {5}{2} \div 0.5 = -\frac {5}{2} \times \frac{10}{5} = -5$

RHS = $5 \div \left(-2\div 0.5 \right) = -5 \div \frac {2}{0.5} = -5 \times \frac {0.5}{2} = -5 \times \frac {5}{20} = -\frac {5}{4}$

Since, LHS $\ne$ RHS, therefore, the associative property does not hold for division.

Note:

• The associative property is applicable to the operation addition
• The associative property is applicable to the operation multiplication
• The associative property is not applicable to the operation subtraction
• The associative property is not applicable to the operation division

## Practice Problems

Verify Associative Property of Addition and Multiplication for the following set of numbers

• $A = 5$, $B = -7$, $C = 2$
• $A = \frac {2}{5}$, $B = -7$, $C = \frac{1}{3}$
• $A = 0.95$, $B = 1.5$, $C = -8.9$

## FAQs

### What is the associative property? Give an example.

The associative property states that the sum or the product of any three or more numbers is not affected by the way in which the numbers are grouped by parentheses. In other words, if the same numbers are grouped in a different way for addition and multiplication, their result remains the same.

For example, in the case of addition $12 + \left(14 + 18 \right) = \left(12 + 14 \right) + 18$. (The sum in both the cases is $44$ and in the case of multiplication $7 \times \left(5 \times 4 \right) = \left(7 \times 5\right) \times 4 = 140$.

### What is the associative property formula?

There are two variations of associative property in math:
Associative property of addition: It states that for any three numbers $A$, $B$, and $C$, $A + \left(B + C \right) = \left(A + B \right) + C$.
Associative property of multiplication: It states that for any three numbers $A$, $B$, and $C$, $A \times \left(B \times C \right) = \left(A \times B \right) \times C$.

### What is the difference between associative and commutative property?

The associative property deals with the grouping of numbers whereas the commutative property deals with the ordering of numbers while performing addition or subtraction.

The associative property states that in the case of addition and multiplication the grouping of the numbers does not matter i.e., for any three numbers $A$, $B$, and $C$,
Addition: $A + \left(B + C \right) = \left(A + B \right) + C$
Multiplication: $A \times \left(B \times C \right) = \left(A \times B \right) \times C$

The associative property states that in the case of addition and multiplication the ordering of the numbers does not matter i.e., for any two numbers $A$, and $B$,
Addition: $A + B = B + A$.
Multiplication: $A \times B = B \times A$.

### To which operations Associative property is applicable?

The associative property is applicable to the operations of addition and multiplication. It does not hold for subtraction and division.

### Is the associative property applicable to division and subtraction?

No, the associative property does not apply to subtraction and division.

### Is multiplication always associative?

The operation multiplication always follows associate property for all the categories of numbers such as natural numbers, whole numbers, integers, rational numbers, and irrational numbers.

## Conclusion

The associative property states that the result remains the same irrespective of the order in which the arithmetic operation is performed. The associative property is applicable to addition and multiplication only and not for subtraction and division.