• Home
• /
• Blog
• /
• Addition of Algebraic Expressions(With Methods & Examples)

# Addition of Algebraic Expressions(With Methods & Examples)

October 28, 2022

This post is also available in: हिन्दी (Hindi)

In mathematics, addition, subtraction, multiplication, and division are four basic operations. Just like we add numbers, we can perform the addition of algebraic expressions.  In order to add two or more algebraic expressions, we combine all the like terms and then add them.

Let’s understand the methods of adding algebraic expressions with steps and examples.

## What is the Addition of Algebraic Expressions?

The addition of algebraic expressions is quite similar to the addition of numbers. However while adding algebraic expressions, you need to collect the like terms and then add them. The sum of the several like terms would be the like term whose coefficient is the total of the coefficients of the like terms and variables same as that of addends.

There are two ways for performing the algebra addition.

• Horizontal Method of Algebra Addition
• Column Method of Algebra Addition

## Horizontal Method of Algebra Addition

In this method, we write all expressions in a horizontal line and then arrange the terms to collect all the groups of like terms. These like terms are then added.

### Steps of Horizontal Method of Algebra Addition

These are the steps to perform the addition of two or more algebraic expressions using the horizontal method.

Let’s consider three algebraic expressions $2x^{3} + 3x^{2}y – 5xy{2} + 7xy + 6y – 9$, $3x^{2} + xy – 8y^{2}$, and $x^{3} + y^{3}$.

Step 1: Write the given algebraic expressions using an addition symbol.

$\left(2x^{3} + 3x^{2}y – 5xy{2} + 7xy + 6y – 9 \right) + \left(3x^{2} + xy – 8y^{2} \right) + \left(x^{3} + y^{3} \right)$

Step 2: Open the brackets and multiply the signs(Use the rules for opening the brackets).

$2x^{3} + 3x^{2}y – 5xy{2} + 7xy + 6y – 9 + 3x^{2} + xy – 8y^{2} + x^{3} + y^{3}$

Step 3: Now, combine the like terms.

$(2x^{3} + x^{3}) + 3x^{2}y – 5xy{2} + (7xy + xy) + 6y – 9 + 3x^{2} – 8y^{2} + y^{3}$

Step 4: Add the coefficients. Keep the variables and exponents on the variables the same.

$3x^{3} + 3x^{2}y – 5xy{2} + 8xy + 6y – 9 + 3x^{2} – 8y^{2} + y^{3}$

Step 5: Rewrite the answer by arranging the terms in descending order of exponents.

$3x^{3} + y^{3} + 3x^{2}y – 5xy{2} + 3x^{2} – 8y^{2} + 8xy + 6y – 9$

Therefore,  $\left(2x^{3} + 3x^{2}y – 5xy{2} + 7xy + 6y – 9 \right) + \left(3x^{2} + xy – 8y^{2} \right) + \left(x^{3} + y^{3} \right)$

$= 3x^{3} + y^{3} + 3x^{2}y – 5xy{2} + 3x^{2} – 8y^{2} + 8xy + 6y – 9$.

Rewriting the answer by arranging the terms in descending order of exponents

$7x^{3} + y^{3} + 3x^{2}y – 16xy^{2} + 11$

Is your child struggling with Maths?
We can help!
Country
• Afghanistan 93
• Albania 355
• Algeria 213
• American Samoa 1-684
• Andorra 376
• Angola 244
• Anguilla 1-264
• Antarctica 672
• Antigua & Barbuda 1-268
• Argentina 54
• Armenia 374
• Aruba 297
• Australia 61
• Austria 43
• Azerbaijan 994
• Bahamas 1-242
• Bahrain 973
• Belarus 375
• Belgium 32
• Belize 501
• Benin 229
• Bermuda 1-441
• Bhutan 975
• Bolivia 591
• Bosnia 387
• Botswana 267
• Bouvet Island 47
• Brazil 55
• British Indian Ocean Territory 246
• British Virgin Islands 1-284
• Brunei 673
• Bulgaria 359
• Burkina Faso 226
• Burundi 257
• Cambodia 855
• Cameroon 237
• Cape Verde 238
• Caribbean Netherlands 599
• Cayman Islands 1-345
• Central African Republic 236
• Chile 56
• China 86
• Christmas Island 61
• Cocos (Keeling) Islands 61
• Colombia 57
• Comoros 269
• Congo - Brazzaville 242
• Congo - Kinshasa 243
• Cook Islands 682
• Costa Rica 506
• Croatia 385
• Cuba 53
• Cyprus 357
• Czech Republic 420
• Denmark 45
• Djibouti 253
• Dominica 1-767
• Egypt 20
• El Salvador 503
• Equatorial Guinea 240
• Eritrea 291
• Estonia 372
• Ethiopia 251
• Falkland Islands 500
• Faroe Islands 298
• Fiji 679
• Finland 358
• France 33
• French Guiana 594
• French Polynesia 689
• French Southern Territories 262
• Gabon 241
• Gambia 220
• Georgia 995
• Germany 49
• Ghana 233
• Gibraltar 350
• Greece 30
• Greenland 299
• Guam 1-671
• Guatemala 502
• Guernsey 44
• Guinea 224
• Guinea-Bissau 245
• Guyana 592
• Haiti 509
• Heard & McDonald Islands 672
• Honduras 504
• Hong Kong 852
• Hungary 36
• Iceland 354
• India 91
• Indonesia 62
• Iran 98
• Iraq 964
• Ireland 353
• Isle of Man 44
• Israel 972
• Italy 39
• Jamaica 1-876
• Japan 81
• Jersey 44
• Jordan 962
• Kazakhstan 7
• Kenya 254
• Kiribati 686
• Kuwait 965
• Kyrgyzstan 996
• Laos 856
• Latvia 371
• Lebanon 961
• Lesotho 266
• Liberia 231
• Libya 218
• Liechtenstein 423
• Lithuania 370
• Luxembourg 352
• Macau 853
• Macedonia 389
• Malawi 265
• Malaysia 60
• Maldives 960
• Mali 223
• Malta 356
• Marshall Islands 692
• Martinique 596
• Mauritania 222
• Mauritius 230
• Mayotte 262
• Mexico 52
• Micronesia 691
• Moldova 373
• Monaco 377
• Mongolia 976
• Montenegro 382
• Montserrat 1-664
• Morocco 212
• Mozambique 258
• Myanmar 95
• Namibia 264
• Nauru 674
• Nepal 977
• Netherlands 31
• New Caledonia 687
• New Zealand 64
• Nicaragua 505
• Niger 227
• Nigeria 234
• Niue 683
• Norfolk Island 672
• North Korea 850
• Northern Mariana Islands 1-670
• Norway 47
• Oman 968
• Pakistan 92
• Palau 680
• Palestine 970
• Panama 507
• Papua New Guinea 675
• Paraguay 595
• Peru 51
• Philippines 63
• Pitcairn Islands 870
• Poland 48
• Portugal 351
• Puerto Rico 1
• Qatar 974
• Romania 40
• Russia 7
• Rwanda 250
• Samoa 685
• San Marino 378
• Saudi Arabia 966
• Senegal 221
• Serbia 381 p
• Seychelles 248
• Sierra Leone 232
• Singapore 65
• Slovakia 421
• Slovenia 386
• Solomon Islands 677
• Somalia 252
• South Africa 27
• South Georgia & South Sandwich Islands 500
• South Korea 82
• South Sudan 211
• Spain 34
• Sri Lanka 94
• Sudan 249
• Suriname 597
• Svalbard & Jan Mayen 47
• Swaziland 268
• Sweden 46
• Switzerland 41
• Syria 963
• Sao Tome and Principe 239
• Taiwan 886
• Tajikistan 992
• Tanzania 255
• Thailand 66
• Timor-Leste 670
• Togo 228
• Tokelau 690
• Tonga 676
• Trinidad & Tobago 1-868
• Tunisia 216
• Turkey 90
• Turkmenistan 993
• Turks & Caicos Islands 1-649
• Tuvalu 688
• U.S. Outlying Islands
• U.S. Virgin Islands 1-340
• UK 44
• US 1
• Uganda 256
• Ukraine 380
• United Arab Emirates 971
• Uruguay 598
• Uzbekistan 998
• Vanuatu 678
• Vatican City 39-06
• Venezuela 58
• Vietnam 84
• Wallis & Futuna 681
• Western Sahara 212
• Yemen 967
• Zambia 260
• Zimbabwe 263
Age Of Your Child
• Less Than 6 Years
• 6 To 10 Years
• 11 To 16 Years
• Greater Than 16 Years

### Examples

Ex 1: Add $mn + t$, $2mn – 2t$ and $-3t + 3mn$

$\left(mn + t \right) + \left(2mn – 2t \right) + \left(-3t + 3mn \right)$

$=mn + t + 2mn – 2t – 3t + 3mn$

$=\left(mn + 2mn + 3mn \right) + \left(t – 2t – 3t \right)$

$=6mn – 4t$

Ex 2: Add $\left(-5x^{2} – x + 4 \right)$ and $\left(-3x^{2} – 5x + 2 \right)$

$\left(-5x^{2} – x + 4 \right) + \left(-3x^{2} – 5x + 2 \right)$

$=-5x^{2} – x + 4 – 3x^{2} – 5x + 2$

$=\left(-5x^{2} – 3x^{2} \right) + \left(– x – 5x \right) + \left(4 + 2 \right)$

$=-8x^{2} – 6x + 6$

Ex 3: Add $\left(20.2x^{2} + 6x + 5 \right)$ and $\left(1.7x^{2} – 3x – 8 \right)$

$=\left(20.2x^{2} + 6x + 5 \right)$ + $\left(1.7x^{2} – 3x – 8 \right)$

$=20.2x^{2} + 6x + 5 + 1.7x^{2} – 3x – 8$

$=\left(20.2x^{2} + 1.7x^{2} \right) + \left(6x – 3x \right) + \left(5 – 8 \right)$

$=21.9x^{2} + 3x + (-3)$

$=21.9x^{2} + 3x – 3$

## Column Method of Algebra Addition

In this method, we write each expression in a separate row in a way that their like terms are arranged one below the other in the column. Then you need to add the terms column-wise.

### Steps of Column Method of Algebra Addition

These are the steps to perform the addition of two or more algebraic expressions using the column method.

Let’s consider three algebraic expressions $5x^{3} + 2x^{2}y – 7xy^{2} + 8$, $-2x^{3} – 9xy^{2} + 6$,  $3x^{3} + x^{2}y – 3$, and $x^{3} + y^{3}$

Step 1: Write all the expressions one below the other. Make sure to like terms in one column. If there is a term whose like term is not there in the second expression, then leave that column blank.

Step 2: Add the numerical coefficient of each column (like terms) and write below it in the same column followed by the common variable.

Step 3: Rewrite the answer by arranging the terms in descending order of exponents.

Therefore, the answer is $7x^{3} + 3x^{2}y – 16xy^{2} + 11 + y^{3}$.

Rewriting the answer by arranging the terms in descending order of exponents

$7x^{3} + y^{3} + 3x^{2}y – 16xy^{2} + 11$.

### Examples

Ex 1: Add $\left(-x^{2} + x – 4 \right)$ and $\left(3x^{2} – 8x – 2 \right)$

Writing $\left(-x^{2} + x – 4 \right)$ and $\left(3x^{2} – 8x – 2 \right)$ one below the other.

Therefore, $\left(-x^{2} + x – 4 \right) + \left(3x^{2} – 8x – 2 \right) = 2x^{2} – 7x – 6$

Ex 2: Add $\left(6m^{5} + 1 \right)$ and $\left(2m^{5} + 9m – 1 \right)$

Writing $\left(6m^{5} + 1 \right)$ and $\left(2m^{5} + 9m – 1 \right)$ one below the other.

Therefore, $\left(6m^{5} + 1 \right) + \left(2m^{5} + 9m – 1 \right) = 8m^{5} + 9m$

## Tips for Addition of Algebraic Expressions

• We can ignore the order of variables in like terms in an algebraic expression. For example,  $3a + 2b$, and, $9b + a$ both are like terms.
• We can ignore writing $1$ as the numerical coefficient of any term. For example, $xy$ is the same as $1xy$.
• We can replace a missing term with $0$ with the same variables. For example, a missing term can be written as $0x$, $0y$, or $0xy$ depending on the variables of the missing term.

## Practice Problems

1. Add the following algebraic expression using the horizontal method.
• $2x^{2} + 3xy + 5y^{2}$, $-4x^{2} + xy + 8y^{2}$
• $x^{2} + 7xy – 2y^{2}$, $6x^{2} + 4xy – 2y^{2}$, $x^{2} + y^{2}$
• $-5x^{2} – 6y^{2}$, $9xy – 12y^{2}$, $x^{2} + 9y^{2}$
• $9x^{2} – xy + 5y^{2}$, $12x^{2} + 2xy$, $y^{2}$
2. Add the following algebraic expression using the column method.
• $6x^{2} + 13xy + 12y^{2}$, $-x^{2} + 5xy – 7y^{2}$, $4x^{2} + 10xy + y^{2}$
• $x^{2} – y^{2}$, $-5x^{2} + 7xy – 3y^{2}$, $2xy + 7y^{2}$
• $10xy – y^{2}$, $15x^{2} + 10xy + 8y^{2}$, $2x^{2} – 9y^{2}$
• $x^{2} + 9xy$, $3x^{2} + 15xy – 8y^{2}$, $4x^{2} + 8xy$

## FAQs

### What is the rule for adding algebraic terms?

The basic rule to add algebraic terms is to add only like terms.

### Can we add the unlike terms of the algebraic expressions?

No, we cannot add the unlike terms of the algebraic expressions. For example, $2x^{2} + y^{3}$ cannot be simplified further.

### How do you combine the like terms and simplify?

Group together all the like terms, add or subtract the numerical coefficients of the like terms and attach the common variable to it.

## Conclusion

As you add and simplify numbers, algebraic expressions can also be added and simplified. To add two or more algebraic expressions, we combine all the like terms and then add them and then arrange the terms in descending order of the exponents of the variables.